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Max-Cut Problem

Definition

Let G = (V ,E , c) be an undirected weighted
graph.

Any S ⊆ V induces a set δ(S) of edges with
exactly one end node in S . The set δ(S) is
called a cut of G with shores S and V \S .

Finding a cut with maximum aggregate edge
weight is known as max-cut problem.
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Related Polytopes

Cut polytope CUT(G)
Convex hull of all incidence vectors of
cuts of G .

Semimetric polytope MET(G)
Relaxation of the max-cut IP formulation
described by two inequality classes:

CUT(K3)

Odd-cycle: x(F )− x(C \F ) ≤ |F | − 1, for each cycle C of G ,
for all F ⊆ C , |F | odd.

Trivial: 0 ≤ xe ≤ 1, for all e ∈ E .
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Exact Solution Methods

Algorithms

Branch&Cut,

Branch&Bound using SDP relaxations.

Certain separation procedures only work
for dense/complete graphs.

How to handle sparse graphs

Trivial approach:
artificial completion using edges with weight 0.

Drawback:
increases number of variables and thus the computational difficulty.
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Outline of the Separation using Graph Contraction

Input: LP solution z ∈ MET(G )\CUT(G ).
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Outline of the Separation using Graph Contraction

Transform 1-edges into 0-edges.

z

z̃

z

z′ (a′, α′)

(c, γ)

(c̃, γ̃)

(c, γ)

Separate

G

G

G
′

Switch

Contract

Extend Project

Lift

Un-switch

a b c

d e f

g h i

Thorsten Bonato Separation for Max-Cut on General Graphs 8 / 20



Outline of the Separation using Graph Contraction

Transform 1-edges into 0-edges.

z

z̃

z

z′ (a′, α′)

(c, γ)

(c̃, γ̃)

(c, γ)

Separate

G

G

G
′

Switch

Contract

Extend Project

Lift

Un-switch

a b c

d e f

g h i

Thorsten Bonato Separation for Max-Cut on General Graphs 8 / 20



Outline of the Separation using Graph Contraction

Contract 0-edges.
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Outline of the Separation using Graph Contraction

Contract 0-edges.
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Outline of the Separation using Graph Contraction

Introduce artificial LP values for non-edges.
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Outline of the Separation using Graph Contraction

Separate extended LP solution.
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Outline of the Separation using Graph Contraction

Project out nonzero coefficients related to non-edges.
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Outline of the Separation using Graph Contraction

Lift inequality.
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Outline of the Separation using Graph Contraction

Lift inequality.
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Outline of the Separation using Graph Contraction

Switch lifted inequality.
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Outline of the Separation using Graph Contraction
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Contraction as Heuristic Odd-Cycle Separator

Assume the end nodes of a 0-edge uv share a
common neighbor w .

Contraction of uv merges the edges uw and
vw .

If the LP values of the merged edges differ,
e. g., zuw > zvw

then z violates the odd-cycle
inequality

xuw − xvw − xuv ≤ 0.

u v

w

Contraction allows heuristic odd-cycle separation.
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Extension

Given a contracted LP solution z ∈ MET(G ),
assign artificial LP values to the non-edges.

Goal: extended LP solution z ′ ∈ MET(G
′
).

New cycles in the extended graph

consist of
a former non-edge and a connecting path.

ab

dg e cf

hi

Feasible artificial LP values of non-edge uv

Range: [ max{0, Luv}, min{Uuv , 1} ] ⊆ [0, 1] with

Luv := max { z(F ) − z(P \ F ) − |F |+ 1 | P (u, v)-path, F ⊆ P, |F | odd },
Uuv := min {−z(F ) + z(P \ F ) + |F | | P (u, v)-path, F ⊆ P, |F | even }.

Odd-cycle inequality derived from arg max (resp. arg min) is called a
lower (resp. upper) inequality of uv .
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Projection

Consider a valid inequality a′T x ′ ≤ α′
violated by the extended LP solution z ′.

Non-edges may have nonzero coefficients!

Project out coefficient of non-edge uv

Add a lower inequality if a′uv > 0 resp. an
upper inequality if a′uv < 0.

(· · · a
′

uv
· · · a

′

st
· · · , α

′)

In the projected inequality, all non-edge coefficients are 0 and can be
truncated.

Problem

If the added inequalities are not tight at z ′ then the projection
reduces the initial violation a′T z ′ − α′.
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Adaptive Extension

Artificial LP values z ′uv adapt to the sign of the corresponding
coefficient in a given inequality a′T x ′ ≤ α′, i. e.,

z ′uv =

{
Luv if a′uv > 0,

Uuv otherwise.

Advantage: Violation remains unchanged during projection.
Drawback: Separation procedures may need to be modified.

Trivial modification case

For a given class of inequalities, all
nonzero coefficients have identical sign.

E. g., bicycle-p-wheel inequalities: x(B) ≤ 2p
(set z ′uv = Luv for all non-edges uv).

1

2

3

4

p
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Adaptive Extension: Target Cuts (1/2)

Input for separation framework [Buchheim, Liers, and Oswald]

Associated polyhedron Q = conv {x1, . . . , xs}+ cone {y1, . . . , yt},
Interior point q ∈ Q,

Point z /∈ Q to be separated.

Obtain facet defining inequality aT (x − q) ≤ 1 by solving the LP

max aT (z − q)

s.t. aT (xi − q) ≤ 1, for all i = 1, . . . , s

aT yj ≤ 0, for all j = 1, . . . , t

a ∈ Rm

For max-cut we set Q = CUT
(
G (W )

)
for a subset W ⊆ V .
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Adaptive Extension: Target Cuts (2/2)

Modified input

W.l.o.g. let the last ` vector entries correspond to the non-edges.

z ′ := (z1, . . . , zm−`, L1, . . . , L`, U1, . . . , U`),
x ′i := (xi1, . . . , xi ,m−`, xi ,m−`+1, . . . , xim, xi ,m−`+1, . . . , xim),
q′ := (q1, . . . , qm−`, qm−`+1, . . . , qm, qm−`+1, . . . , qm),

Q ′ := conv {x ′1, . . . , x ′s}+ cone {−em−`+k , em+k | k = 1, . . . , `}.

Resulting target cut separation LP

max a′T (z ′ − q′)

s.t. a′T (x ′i − q′) ≤ 1, for all i = 1, . . . , s

−a′m−`+k , a′m+k ≤ 0, for all k = 1, . . . , `

a′ ∈ Rm+`

In an optimum solution a′∗ at most one of a′∗m−`+k and a′∗m+k can be
nonzero for each k = 1, . . . , `.
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Computational Experiments

Used max-cut solver based on B&C framework ABACUS.

Problem classes
1 Unconstrained quadratic 0/1-optimization problems.
2 Spin glass problems on toroidal grid graphs with:

Uniformly distributed ±1-weights.
Gaussian distributed integral weights.

Separation schemes

Standard:
odd-cycles (spanning-tree heuristic, 3-/4-cycles, exact separation).

Contraction:
standard scheme + contraction as heuristic OC-separator.

Extension:
contraction scheme + separation of bicycle-p-wheels, hypermetric
inequalities and target cuts on the extended LP solution.
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Unconstrained Quadratic 0/1-Optimization Problems
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Spin Glass Problems with Uniformly Distributed ±1-Weights
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Spin Glass Problems with Gaussian Distributed Integral Weights
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Conclusion and Future Work

Separation using graph contraction

Enables the use of separation techniques for dense/complete
graphs on sparse graphs.

Accelerates the exact solution of the max-cut problem for the
examined classes of spin glass problems.

Acceleration is mainly due to the use of contraction as heuristic
odd-cycle separator.

Future work

Develop special branching rules.

Determine good parameter settings.

Further computational experiments.

Thank you for your attention!
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