Separation for the Max-Cut Problem on General Graphs

Thorsten Bonato

Research Group Discrete and Combinatorial Optimization University of Heidelberg

Joint work with: Michael Jünger (University of Cologne) Gerhard Reinelt (University of Heidelberg) Giovanni Rinaldi (IASI, Rome)

14th Combinatorial Optimization Workshop Aussois, January 6, 2010

2 Separation using Graph Contraction

1 Max-Cut Problem

2 Separation using Graph Contraction

3 Computational Results

Definition

Let G = (V, E, c) be an undirected weighted graph.

Definition

Let G = (V, E, c) be an undirected weighted graph.

Any $S \subseteq V$ induces a set $\delta(S)$ of edges with exactly one end node in S. The set $\delta(S)$ is called a cut of G with shores S and $V \setminus S$.

Definition

Let G = (V, E, c) be an undirected weighted graph.

Any $S \subseteq V$ induces a set $\delta(S)$ of edges with exactly one end node in S. The set $\delta(S)$ is called a cut of G with shores S and $V \setminus S$.

Finding a cut with maximum aggregate edge weight is known as max-cut problem.

Cut polytope $\mbox{CUT}(G)$

Convex hull of all incidence vectors of cuts of G.

 $CUT(K_3)$

Cut polytope CUT(G)

Convex hull of all incidence vectors of cuts of G.

Semimetric polytope MET(G)

Relaxation of the max-cut IP formulation described by two inequality classes:

 $CUT(K_3)$

$$\begin{array}{lll} \mathsf{Odd}\mathsf{-cycle:} & x(F)-x(C \setminus F) \leq |F|-1, & \text{for each cycle } C \text{ of } G, \\ & \text{for all } F \subseteq C, |F| \text{ odd.} \end{array}$$

Trivial:

$$0 \leq x_e \leq 1$$
, for all $e \in E$.

Algorithms

- Branch & Cut,
- Branch&Bound using SDP relaxations.

Certain separation procedures only work for dense/complete graphs.

Algorithms

- Branch & Cut,
- Branch&Bound using SDP relaxations.

Certain separation procedures only work for dense/complete graphs.

How to handle sparse graphs?

Algorithms

- Branch & Cut,
- Branch&Bound using SDP relaxations.

Certain separation procedures only work for dense/complete graphs.

How to handle sparse graphs

• Trivial approach:

artificial completion using edges with weight 0.

• Drawback:

increases number of variables and thus the computational difficulty.

1 Max-Cut Problem

2 Separation using Graph Contraction

3 Computational Results

Input: LP solution $z \in MET(G) \setminus CUT(G)$.

Transform 1-edges into 0-edges.

Transform 1-edges into 0-edges.

Contract 0-edges.

Contract 0-edges.

Introduce artificial LP values for non-edges.

Introduce artificial LP values for non-edges.

Separate extended LP solution.

Separate extended LP solution.

Project out nonzero coefficients related to non-edges.

Project out nonzero coefficients related to non-edges.

Lift inequality.

Lift inequality.

Switch lifted inequality.

Switch lifted inequality.

Assume the end nodes of a 0-edge uv share a common neighbor w.

Assume the end nodes of a 0-edge uv share a common neighbor w.

Contraction of *uv* merges the edges *uw* and *vw*.

Assume the end nodes of a 0-edge uv share a common neighbor w.

Contraction of *uv* merges the edges *uw* and *vw*.

If the LP values of the merged edges differ, e.g., $z_{\rm uw}>z_{\rm vw}$

Assume the end nodes of a 0-edge uv share a common neighbor w.

Contraction of *uv* merges the edges *uw* and *vw*.

If the LP values of the merged edges differ, e.g., $z_{uw} > z_{vw}$ then z violates the odd-cycle inequality

$$x_{uw}-x_{vw}-x_{uv}\leq 0.$$

Assume the end nodes of a 0-edge uv share a common neighbor w.

Contraction of *uv* merges the edges *uw* and *vw*.

If the LP values of the merged edges differ, e.g., $z_{uw} > z_{vw}$ then z violates the odd-cycle inequality

$$x_{uw}-x_{vw}-x_{uv}\leq 0.$$

Contraction allows heuristic odd-cycle separation.

Extension

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

Extension

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph

Extension

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph consist of a former non-edge

Extension

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph consist of a former non-edge and a connecting path.

Extension

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph consist of a former non-edge and a connecting path.

Feasible artificial LP values of non-edge uv Range: $[\max\{0, L_{uv}\}, \min\{U_{uv}, 1\}] \subseteq [0, 1]$ with

$$\begin{array}{l} L_{uv} := \max \left\{ \ \overline{z}(F) - \overline{z}(P \setminus F) - |F| + 1 \mid P \ (u, v) \text{-path}, \ F \subseteq P, \ |F| \ \text{odd} \right\}, \\ U_{uv} := \min \left\{ -\overline{z}(F) + \overline{z}(P \setminus F) + |F| \qquad |P \ (u, v) \text{-path}, \ F \subseteq P, \ |F| \ \text{even} \right\}. \end{array}$$

Extension

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph consist of a former non-edge and a connecting path.

Feasible artificial LP values of non-edge uv Range: $[\max\{0, L_{uv}\}, \min\{U_{uv}, 1\}] \subseteq [0, 1]$ with

$$\begin{array}{l} L_{uv} := \max \left\{ \ \overline{z}(F) - \overline{z}(P \setminus F) - |F| + 1 \mid P \ (u, v) \text{-path}, \ F \subseteq P, \ |F| \ \text{odd} \right\}, \\ U_{uv} := \min \left\{ -\overline{z}(F) + \overline{z}(P \setminus F) + |F| \quad |P \ (u, v) \text{-path}, \ F \subseteq P, \ |F| \ \text{even} \right\}. \end{array}$$

Odd-cycle inequality derived from arg max (resp. arg min) is called a lower (resp. upper) inequality of *uv*.

Consider a valid inequality $\overline{a}'^T \overline{x}' \leq \overline{\alpha}'$ violated by the extended LP solution \overline{z}' . Non-edges may have nonzero coefficients!

Consider a valid inequality $\overline{a}'^T \overline{x}' \leq \overline{a}'$ violated by the extended LP solution \overline{z}' . Non-edges may have nonzero coefficients!

Project out coefficient of non-edge uv

Add a lower inequality if $\overline{a}'_{uv} > 0$ resp. an upper inequality if $\overline{a}'_{uv} < 0$.

Consider a valid inequality $\overline{a}'^T \overline{x}' \leq \overline{\alpha}'$ violated by the extended LP solution \overline{z}' . Non-edges may have nonzero coefficients!

Project out coefficient of non-edge uv Add a lower inequality if $\overline{a}'_{uv} > 0$ resp. an upper inequality if $\overline{a}'_{uv} < 0$.

In the projected inequality, all non-edge coefficients are 0 and can be truncated.

Consider a valid inequality $\overline{a}'^T \overline{x}' \leq \overline{a}'$ violated by the extended LP solution \overline{z}' . Non-edges may have nonzero coefficients!

Project out coefficient of non-edge uv Add a lower inequality if $\overline{a}'_{uv} > 0$ resp. an upper inequality if $\overline{a}'_{uv} < 0$.

$$(\cdots \quad \overline{\mathbf{a}}_{\mathsf{uv}}' \cdots \quad \overline{\mathbf{a}}_{\mathsf{st}}' \cdots , \overline{\alpha}') \\ + (\cdots - \overline{\mathbf{a}}_{\mathsf{uv}}' \cdots \cdots \cdots , \overline{\beta}_1') \\ + (\cdots \quad \cdots \quad - \overline{\mathbf{a}}_{\mathsf{st}}' \cdots , \overline{\beta}_2') \\ \hline = (\cdots \quad 0 \quad \cdots \quad 0 \quad \cdots , \overline{\gamma})$$

In the projected inequality, all non-edge coefficients are 0 and can be truncated.

Problem

If the added inequalities are not tight at \overline{z}' then the projection reduces the initial violation $\overline{a}'^T \overline{z}' - \overline{\alpha}'$.

Artificial LP values \overline{z}'_{uv} adapt to the sign of the corresponding coefficient in a given inequality $\overline{a}'^T \overline{x}' \leq \overline{\alpha}'$, i. e.,

$$\overline{z}'_{uv} = \left\{ egin{array}{cc} L_{uv} & ext{if } \overline{a}'_{uv} > 0, \ U_{uv} & ext{otherwise}. \end{array}
ight.$$

Artificial LP values \overline{z}'_{uv} adapt to the sign of the corresponding coefficient in a given inequality $\overline{a}'^T \overline{x}' \leq \overline{\alpha}'$, i. e.,

$$\overline{z}'_{uv} = \left\{ egin{array}{cc} L_{uv} & ext{if } \overline{a}'_{uv} > 0, \ U_{uv} & ext{otherwise.} \end{array}
ight.$$

Advantage: Violation remains unchanged during projection. **Drawback**: Separation procedures may need to be modified.

Artificial LP values \overline{z}'_{uv} adapt to the sign of the corresponding coefficient in a given inequality $\overline{a}'^T \overline{x}' \leq \overline{\alpha}'$, i. e.,

$$\overline{z}'_{uv} = \left\{ egin{array}{cc} L_{uv} & ext{if } \overline{a}'_{uv} > 0, \ U_{uv} & ext{otherwise.} \end{array}
ight.$$

Advantage: Violation remains unchanged during projection. **Drawback**: Separation procedures may need to be modified.

Trivial modification case

For a given class of inequalities, all nonzero coefficients have identical sign.

Artificial LP values \overline{z}'_{uv} adapt to the sign of the corresponding coefficient in a given inequality $\overline{a}'^T \overline{x}' \leq \overline{\alpha}'$, i. e.,

$$\overline{z}'_{uv} = \left\{ egin{array}{cc} L_{uv} & ext{if } \overline{a}'_{uv} > 0, \ U_{uv} & ext{otherwise.} \end{array}
ight.$$

Advantage: Violation remains unchanged during projection. **Drawback**: Separation procedures may need to be modified.

Trivial modification case

For a given class of inequalities, all nonzero coefficients have identical sign.

E.g., bicycle-*p*-wheel inequalities: $x(B) \le 2p$ (set $\overline{z}'_{uv} = L_{uv}$ for all non-edges uv).

Adaptive Extension: Target Cuts (1/2)

Input for separation framework [Buchheim, Liers, and Oswald]

- Associated polyhedron $Q = \operatorname{conv} \{x_1, \ldots, x_s\} + \operatorname{cone} \{y_1, \ldots, y_t\},\$
- Interior point $q \in Q$,
- Point $z \notin Q$ to be separated.

Adaptive Extension: Target Cuts (1/2)

Input for separation framework [Buchheim, Liers, and Oswald]

- Associated polyhedron $Q = \operatorname{conv} \{x_1, \ldots, x_s\} + \operatorname{cone} \{y_1, \ldots, y_t\},\$
- Interior point $q \in Q$,
- Point $z \notin Q$ to be separated.

Obtain facet defining inequality $a^T(x-q) \leq 1$ by solving the LP

$$\begin{array}{ll} \max \ a^T(z-q) \\ \text{s.t.} \ a^T(x_i-q) \leq 1, \ \text{ for all } i=1,\ldots,s \\ a^Ty_j & \leq 0, \ \text{ for all } j=1,\ldots,t \\ a \in \mathbb{R}^m \end{array}$$

Input for separation framework [Buchheim, Liers, and Oswald]

- Associated polyhedron $Q = \operatorname{conv} \{x_1, \dots, x_s\} + \operatorname{cone} \{y_1, \dots, y_t\},\$
- Interior point $q \in Q$,
- Point $z \notin Q$ to be separated.

Obtain facet defining inequality $a^T(x-q) \leq 1$ by solving the LP

$$\begin{array}{ll} \max \ a^T(z-q) \\ \text{s.t.} \ a^T(x_i-q) \leq 1, \ \text{ for all } i=1,\ldots,s \\ a^Ty_j & \leq 0, \ \text{ for all } j=1,\ldots,t \\ a \in \mathbb{R}^m \end{array}$$

For max-cut we set Q = CUT(G(W)) for a subset $W \subseteq V$.

W.I.o.g. let the last ℓ vector entries correspond to the non-edges.

W.l.o.g. let the last ℓ vector entries correspond to the non-edges.

$$\begin{aligned} z' &:= (z_1, \ldots, z_{m-\ell}, \quad L_1, \ldots, L_\ell, \quad U_1, \ldots, U_\ell), \\ x'_i &:= (x_{i1}, \ldots, x_{i,m-\ell}, \quad x_{i,m-\ell+1}, \ldots, x_{im}, \quad x_{i,m-\ell+1}, \ldots, x_{im}), \\ q' &:= (q_1, \ldots, q_{m-\ell}, \quad q_{m-\ell+1}, \ldots, q_m, \quad q_{m-\ell+1}, \ldots, q_m), \\ Q' &:= \operatorname{conv} \{x'_1, \ldots, x'_s\} + \operatorname{cone} \{-e_{m-\ell+k}, e_{m+k} \mid k = 1, \ldots, \ell\}. \end{aligned}$$

W.I.o.g. let the last ℓ vector entries correspond to the non-edges.

$$\begin{aligned} z' &:= (z_1, \dots, z_{m-\ell}, \quad L_1, \dots, L_\ell, \quad U_1, \dots, U_\ell), \\ x'_i &:= (x_{i1}, \dots, x_{i,m-\ell}, \quad x_{i,m-\ell+1}, \dots, x_{im}, \quad x_{i,m-\ell+1}, \dots, x_{im}), \\ q' &:= (q_1, \dots, q_{m-\ell}, \quad q_{m-\ell+1}, \dots, q_m, \quad q_{m-\ell+1}, \dots, q_m), \\ Q' &:= \operatorname{conv} \{x'_1, \dots, x'_s\} + \operatorname{cone} \{-e_{m-\ell+k}, e_{m+k} \mid k = 1, \dots, \ell\}. \end{aligned}$$

Resulting target cut separation LP

$$\begin{array}{ll} \max & a'^{T}(z'-q') \\ \text{s.t.} & a'^{T}(x'_{i}-q') & \leq 1, \text{ for all } i=1,\ldots,s \\ & -a'_{m-\ell+k}, \ a'_{m+k} \leq 0, \text{ for all } k=1,\ldots,\ell \\ & a' \in \mathbb{R}^{m+\ell} \end{array}$$

W.I.o.g. let the last ℓ vector entries correspond to the non-edges.

$$\begin{aligned} z' &:= (z_1, \ldots, z_{m-\ell}, \quad L_1, \ldots, L_\ell, \quad U_1, \ldots, U_\ell), \\ x'_i &:= (x_{i1}, \ldots, x_{i,m-\ell}, \quad x_{i,m-\ell+1}, \ldots, x_{im}, \quad x_{i,m-\ell+1}, \ldots, x_{im}), \\ q' &:= (q_1, \ldots, q_{m-\ell}, \quad q_{m-\ell+1}, \ldots, q_m, \quad q_{m-\ell+1}, \ldots, q_m), \\ Q' &:= \operatorname{conv} \{x'_1, \ldots, x'_s\} + \operatorname{cone} \{-e_{m-\ell+k}, e_{m+k} \mid k = 1, \ldots, \ell\}. \end{aligned}$$

Resulting target cut separation LP

$$\begin{array}{ll} \max \quad a'^{T}(z'-q') \\ \text{s.t.} \quad a'^{T}(x'_{i}-q') &\leq 1, \text{ for all } i=1,\ldots,s \\ \quad -a'_{m-\ell+k}, \ a'_{m+k} \leq 0, \text{ for all } k=1,\ldots,\ell \\ \quad a' \in \mathbb{R}^{m+\ell} \end{array}$$

In an optimum solution a'^* at most one of $a'^*_{m-\ell+k}$ and a'^*_{m+k} can be nonzero for each $k = 1, \ldots, \ell$.

1 Max-Cut Problem

2 Separation using Graph Contraction

3 Computational Results

Problem classes

- Unconstrained quadratic 0/1-optimization problems.
- Spin glass problems on toroidal grid graphs with:
 - Uniformly distributed ± 1 -weights.
 - Gaussian distributed integral weights.

Problem classes

- Unconstrained quadratic 0/1-optimization problems.
- Spin glass problems on toroidal grid graphs with:
 - Uniformly distributed ± 1 -weights.
 - Gaussian distributed integral weights.

Separation schemes

• Standard:

odd-cycles (spanning-tree heuristic, 3-/4-cycles, exact separation).

Problem classes

- Unconstrained quadratic 0/1-optimization problems.
- Spin glass problems on toroidal grid graphs with:
 - Uniformly distributed ± 1 -weights.
 - Gaussian distributed integral weights.

Separation schemes

• Standard:

odd-cycles (spanning-tree heuristic, 3-/4-cycles, exact separation).

• Contraction:

standard scheme + contraction as heuristic OC-separator.

Problem classes

- Unconstrained quadratic 0/1-optimization problems.
- Spin glass problems on toroidal grid graphs with:
 - Uniformly distributed ± 1 -weights.
 - Gaussian distributed integral weights.

Separation schemes

• Standard:

odd-cycles (spanning-tree heuristic, 3-/4-cycles, exact separation).

• Contraction:

standard scheme + contraction as heuristic OC-separator.

• Extension:

contraction scheme + separation of bicycle-p-wheels, hypermetric inequalities and target cuts on the extended LP solution.

Unconstrained Quadratic 0/1-Optimization Problems

[[]Intel Xeon 2.8 GHz, 8GB shared RAM.]

Spin Glass Problems with Uniformly Distributed ± 1 -Weights

Average running time of 10 random instances per grid size

[Intel Xeon 2.8 GHz, 8GB shared RAM. Running time capped to 10h per instance.]

Spin Glass Problems with Gaussian Distributed Integral Weights

Average running time of 10 random instances per grid size

[Intel Xeon 2.8 GHz, 8GB shared RAM. Running time capped to 10h per instance.]

Separation using graph contraction

- Enables the use of separation techniques for dense/complete graphs on sparse graphs.
- Accelerates the exact solution of the max-cut problem for the examined classes of spin glass problems.
- Acceleration is mainly due to the use of contraction as heuristic odd-cycle separator.

Separation using graph contraction

- Enables the use of separation techniques for dense/complete graphs on sparse graphs.
- Accelerates the exact solution of the max-cut problem for the examined classes of spin glass problems.
- Acceleration is mainly due to the use of contraction as heuristic odd-cycle separator.

Future work

- Develop special branching rules.
- Determine good parameter settings.
- Further computational experiments.

Separation using graph contraction

- Enables the use of separation techniques for dense/complete graphs on sparse graphs.
- Accelerates the exact solution of the max-cut problem for the examined classes of spin glass problems.
- Acceleration is mainly due to the use of contraction as heuristic odd-cycle separator.

Future work

- Develop special branching rules.
- Determine good parameter settings.
- Further computational experiments.

Thank you for your attention!