Separation for the Max-Cut Problem on General Graphs

Thorsten Bonato

Research Group Discrete and Combinatorial Optimization University of Heidelberg

Joint work with:
Michael Jünger (University of Cologne) Gerhard Reinelt (University of Heidelberg) Giovanni Rinaldi (IASI, Rome)
$14^{\text {th }}$ Combinatorial Optimization Workshop
Aussois, January 6, 2010

Outline

(1) Max-Cut Problem
(2) Separation using Graph Contraction
(3) Computational Results

Outline

(1) Max-Cut Problem

(2) Separation using Graph Contraction

(3) Computational Results

Max-Cut Problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Max-Cut Problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Any $S \subseteq V$ induces a set $\delta(S)$ of edges with exactly one end node in S. The set $\delta(S)$ is called a cut of G with shores S and $V \backslash S$.

Max-Cut Problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Any $S \subseteq V$ induces a set $\delta(S)$ of edges with exactly one end node in S. The set $\delta(S)$ is called a cut of G with shores S and $V \backslash S$.

Finding a cut with maximum aggregate edge weight is known as max-cut problem.

Related Polytopes

Cut polytope CUT(G)

Convex hull of all incidence vectors of cuts of G.

$\operatorname{CUT}\left(K_{3}\right)$

Related Polytopes

Cut polytope CUT(G)

Convex hull of all incidence vectors of cuts of G.

Semimetric polytope MET(G)

Relaxation of the max-cut IP formulation described by two inequality classes:

$\operatorname{CUT}\left(K_{3}\right)$

Odd-cycle: $\quad x(F)-x(C \backslash F) \leq|F|-1, \quad$ for each cycle C of G, for all $F \subseteq C,|F|$ odd.
Trivial:

$$
0 \leq x_{e} \leq 1, \quad \text { for all } e \in E
$$

Exact Solution Methods

Algorithms

- Branch\&Cut,
- Branch\&Bound using SDP relaxations.

Certain separation procedures only work for dense/complete graphs.

Exact Solution Methods

Algorithms

- Branch\&Cut,
- Branch\&Bound using SDP relaxations.

Certain separation procedures only work for dense/complete graphs.

How to handle sparse graphs?

Algorithms

- Branch\&Cut,
- Branch\&Bound using SDP relaxations.

Certain separation procedures only work for dense/complete graphs.

How to handle sparse graphs

- Trivial approach:
artificial completion using edges with weight 0 .
- Drawback:
increases number of variables and thus the computational difficulty.

Outline

(1) Max-Cut Problem

(2) Separation using Graph Contraction
(3) Computational Results

Outline of the Separation using Graph Contraction

Input: LP solution $z \in \operatorname{MET}(G) \backslash \operatorname{CUT}(G)$.

	 Separate		G \bar{G}

Outline of the Separation using Graph Contraction

Transform 1-edges into 0-edges.

Outline of the Separation using Graph Contraction

Transform 1-edges into 0-edges.

Outline of the Separation using Graph Contraction

Contract 0-edges.

Outline of the Separation using Graph Contraction

Contract 0-edges.

Outline of the Separation using Graph Contraction

Introduce artificial LP values for non-edges.

Outline of the Separation using Graph Contraction

Introduce artificial LP values for non-edges.

Outline of the Separation using Graph Contraction

Separate extended LP solution.

Outline of the Separation using Graph Contraction

Separate extended LP solution.

Outline of the Separation using Graph Contraction

Project out nonzero coefficients related to non-edges.

	Separate		G \bar{G} \bar{G}^{\prime}

Outline of the Separation using Graph Contraction

Project out nonzero coefficients related to non-edges.

	Separate	

Outline of the Separation using Graph Contraction

Lift inequality.

\begin{tabular}{|c|c|c|c|}
\hline \& Separate \& \& G
\bar{G}

\bar{G}^{\prime}

\hline
\end{tabular}

Outline of the Separation using Graph Contraction

Lift inequality.

	Separate	

Outline of the Separation using Graph Contraction

Switch lifted inequality.

	Separate		G \bar{G} \bar{G}^{\prime}

Outline of the Separation using Graph Contraction

Switch lifted inequality.

	Separate		G \bar{G} \bar{G}^{\prime}

Outline of the Separation using Graph Contraction

Contraction as Heuristic Odd-Cycle Separator

Assume the end nodes of a 0-edge $u v$ share a common neighbor w.

Contraction as Heuristic Odd-Cycle Separator

Assume the end nodes of a 0-edge $u v$ share a common neighbor w.

Contraction of $u v$ merges the edges $u w$ and VW.

Contraction as Heuristic Odd-Cycle Separator

Assume the end nodes of a 0-edge $u v$ share a common neighbor w.

Contraction of $u v$ merges the edges $u w$ and $V W$.

If the LP values of the merged edges differ,

e. g., $z_{u w}>z_{v w}$

Contraction as Heuristic Odd-Cycle Separator

Assume the end nodes of a 0-edge $u v$ share a common neighbor w.

Contraction of $u v$ merges the edges $u w$ and $V W$.

If the LP values of the merged edges differ,
 e. g., $z_{u w}>z_{v w}$ then z violates the odd-cycle inequality

$$
x_{u w}-x_{v w}-x_{u v} \leq 0
$$

Contraction as Heuristic Odd-Cycle Separator

Assume the end nodes of a 0-edge $u v$ share a common neighbor w.

Contraction of $u v$ merges the edges $u w$ and $V W$.

If the LP values of the merged edges differ,
 e. g., $z_{u w}>z_{v w}$ then z violates the odd-cycle inequality

$$
x_{u w}-x_{v w}-x_{u v} \leq 0
$$

Contraction allows heuristic odd-cycle separation.

Extension

Given a contracted LP solution $\bar{z} \in \operatorname{MET}(\bar{G})$, assign artificial LP values to the non-edges.
Goal: extended LP solution $\bar{z}^{\prime} \in \operatorname{MET}\left(\bar{G}^{\prime}\right)$.

Extension

Given a contracted LP solution $\bar{z} \in \operatorname{MET}(\bar{G})$, assign artificial LP values to the non-edges.
Goal: extended LP solution $\bar{z}^{\prime} \in \operatorname{MET}\left(\bar{G}^{\prime}\right)$.
New cycles in the extended graph

Extension

Given a contracted LP solution $\bar{z} \in \operatorname{MET}(\bar{G})$, assign artificial LP values to the non-edges.
Goal: extended LP solution $\bar{z}^{\prime} \in \operatorname{MET}\left(\bar{G}^{\prime}\right)$.
New cycles in the extended graph consist of a former non-edge

Extension

Given a contracted LP solution $\bar{z} \in \operatorname{MET}(\bar{G})$, assign artificial LP values to the non-edges.
Goal: extended LP solution $\bar{z}^{\prime} \in \operatorname{MET}\left(\bar{G}^{\prime}\right)$.
New cycles in the extended graph consist of a former non-edge and a connecting path.

Extension

Given a contracted LP solution $\bar{z} \in \operatorname{MET}(\bar{G})$, assign artificial LP values to the non-edges.
Goal: extended LP solution $\bar{z}^{\prime} \in \operatorname{MET}\left(\bar{G}^{\prime}\right)$.
New cycles in the extended graph consist of a former non-edge and a connecting path.

Feasible artificial LP values of non-edge uv
Range: [$\left.\max \left\{0, L_{u v}\right\}, \min \left\{U_{u v}, 1\right\}\right] \subseteq[0,1]$ with

$$
\begin{aligned}
& L_{u v}:=\max \{\bar{z}(F)-\bar{z}(P \backslash F)-|F|+1 \mid P(u, v) \text {-path, } F \subseteq P,|F| \text { odd }\} \\
& U_{u v}:=\min \{-\bar{z}(F)+\bar{z}(P \backslash F)+|F| \quad \mid P(u, v) \text {-path, } F \subseteq P,|F| \text { even }\} .
\end{aligned}
$$

Extension

Given a contracted LP solution $\bar{z} \in \operatorname{MET}(\bar{G})$, assign artificial LP values to the non-edges.
Goal: extended LP solution $\bar{z}^{\prime} \in \operatorname{MET}\left(\bar{G}^{\prime}\right)$.
New cycles in the extended graph consist of a former non-edge and a connecting path.

Feasible artificial LP values of non-edge uv

Range: [max $\left.\left\{0, L_{u v}\right\}, \min \left\{U_{u v}, 1\right\}\right] \subseteq[0,1]$ with

$$
\begin{aligned}
& L_{u v}:=\max \{\bar{z}(F)-\bar{z}(P \backslash F)-|F|+1 \mid P(u, v) \text {-path, } F \subseteq P,|F| \text { odd }\} \\
& U_{u v}:=\min \{-\bar{z}(F)+\bar{z}(P \backslash F)+|F| \quad \mid P(u, v) \text {-path, } F \subseteq P,|F| \text { even }\} .
\end{aligned}
$$

Odd-cycle inequality derived from arg max (resp. arg min) is called a lower (resp. upper) inequality of $u v$.

Projection

Consider a valid inequality $\bar{a}^{\prime T} \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$ violated by the extended LP solution \bar{z}^{\prime}.

$$
\left(\begin{array}{lll}
\cdots & \bar{a}_{\mathrm{uv}}^{\prime} & \cdots \\
\bar{a}_{\mathrm{st}}^{\prime} & \cdots, \bar{\alpha}^{\prime}
\end{array}\right)
$$ Non-edges may have nonzero coefficients!

Projection

Consider a valid inequality $\bar{a}^{\prime T} \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$ violated by the extended LP solution \bar{z}^{\prime}. Non-edges may have nonzero coefficients!

$$
\left.\begin{array}{r}
(\cdots \\
\left(\begin{array}{llll}
\cdots & \bar{a}_{\mathrm{uv}}^{\prime} & \cdots & \bar{a}_{\mathrm{st}}^{\prime}
\end{array} \cdots, \bar{\alpha}^{\prime}\right.
\end{array}\right)
$$

Project out coefficient of non-edge uv

Add a lower inequality if $\bar{a}_{u v}^{\prime}>0$ resp. an upper inequality if $\bar{a}_{u v}^{\prime}<0$.

Projection

Consider a valid inequality $\bar{a}^{\prime T} \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$ violated by the extended LP solution \bar{z}^{\prime}.
Non-edges may have nonzero coefficients!

Project out coefficient of non-edge uv

$$
\begin{aligned}
& \left(\cdots \quad \bar{a}_{\mathrm{uv}}^{\prime} \cdots \quad \overline{\mathrm{a}}_{\mathrm{st}}^{\prime} \cdots, \bar{\alpha}^{\prime}\right) \\
& +\left(\cdots-\overline{\mathbf{a}}_{\mathrm{uv}}^{\prime} \cdots \quad \cdots \cdots, \overline{\boldsymbol{\beta}}_{1}^{\prime}\right) \\
& +\left(\cdots \quad \cdots \cdots-\overline{\mathbf{a}}_{\mathrm{st}}^{\prime} \cdots, \overline{\boldsymbol{\beta}}_{2}^{\prime}\right)
\end{aligned}
$$

Add a lower inequality if $\bar{a}_{u v}^{\prime}>0$ resp. an upper inequality if $\bar{a}_{u v}^{\prime}<0$.

In the projected inequality, all non-edge coefficients are 0 and can be truncated.

Projection

Consider a valid inequality $\bar{a}^{\prime} \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$ violated by the extended LP solution \bar{z}^{\prime}.
Non-edges may have nonzero coefficients!

$$
\left.\begin{array}{l}
+\left(\begin{array}{lllll}
\cdots & -\overline{\mathrm{a}}_{\mathrm{uv}}^{\prime} & \cdots & \cdots & \cdots, \bar{\beta}_{1}^{\prime}
\end{array}\right) \\
+\left(\begin{array}{llll}
\cdots & \cdots & \cdots & -\overline{\mathrm{a}}_{\mathrm{st}}^{\prime}
\end{array} \cdots, \overline{\bar{\beta}}_{2}^{\prime}\right.
\end{array}\right)
$$

Project out coefficient of non-edge uv
$=\left(\begin{array}{lllll}\cdots & 0 & \cdots & 0 & \cdots, \bar{\gamma}\end{array}\right)$
Add a lower inequality if $\bar{a}_{u v}^{\prime}>0$ resp. an upper inequality if $\bar{a}_{u v}^{\prime}<0$.

In the projected inequality, all non-edge coefficients are 0 and can be truncated.

Problem

If the added inequalities are not tight at \bar{z}^{\prime} then the projection reduces the initial violation $\bar{a}^{\prime} T \bar{z}^{\prime}-\bar{\alpha}^{\prime}$.

Adaptive Extension

Artificial LP values $\bar{z}_{u v}^{\prime}$ adapt to the sign of the corresponding coefficient in a given inequality $\bar{a}^{\prime} T \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$, i. e.,

$$
\bar{z}_{u v}^{\prime}= \begin{cases}L_{u v} & \text { if } \bar{a}_{u v}^{\prime}>0 \\ U_{u v} & \text { otherwise }\end{cases}
$$

Adaptive Extension

Artificial LP values $\bar{z}_{u v}^{\prime}$ adapt to the sign of the corresponding coefficient in a given inequality $\bar{a}^{\prime} T \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$, i. e.,

$$
\bar{z}_{u v}^{\prime}= \begin{cases}L_{u v} & \text { if } \bar{a}_{u v}^{\prime}>0 \\ U_{u v} & \text { otherwise }\end{cases}
$$

Advantage: Violation remains unchanged during projection. Drawback: Separation procedures may need to be modified.

Adaptive Extension

Artificial LP values $\bar{z}_{u v}^{\prime}$ adapt to the sign of the corresponding coefficient in a given inequality $\bar{a}^{\prime} T \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$, i. e.,

$$
\bar{z}_{u v}^{\prime}= \begin{cases}L_{u v} & \text { if } \bar{a}_{u v}^{\prime}>0 \\ U_{u v} & \text { otherwise }\end{cases}
$$

Advantage: Violation remains unchanged during projection. Drawback: Separation procedures may need to be modified.

Trivial modification case

For a given class of inequalities, all
nonzero coefficients have identical sign.

Adaptive Extension

Artificial LP values $\bar{z}_{u v}^{\prime}$ adapt to the sign of the corresponding coefficient in a given inequality $\bar{a}^{\prime} T \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$, i. e.,

$$
\bar{z}_{u v}^{\prime}= \begin{cases}L_{u v} & \text { if } \bar{a}_{u v}^{\prime}>0 \\ U_{u v} & \text { otherwise }\end{cases}
$$

Advantage: Violation remains unchanged during projection. Drawback: Separation procedures may need to be modified.

Trivial modification case

For a given class of inequalities, all nonzero coefficients have identical sign.
E. g., bicycle- p-wheel inequalities: $x(B) \leq 2 p$ (set $\bar{z}_{u v}^{\prime}=L_{u v}$ for all non-edges $u v$).

Adaptive Extension: Target Cuts (1/2)

Input for separation framework [Buchheim, Liers, and Oswald]

- Associated polyhedron $Q=\operatorname{conv}\left\{x_{1}, \ldots, x_{s}\right\}+\operatorname{cone}\left\{y_{1}, \ldots, y_{t}\right\}$,
- Interior point $q \in Q$,
- Point $z \notin Q$ to be separated.

Adaptive Extension: Target Cuts (1/2)

Input for separation framework [Buchheim, Liers, and Oswald]

- Associated polyhedron $Q=\operatorname{conv}\left\{x_{1}, \ldots, x_{s}\right\}+\operatorname{cone}\left\{y_{1}, \ldots, y_{t}\right\}$,
- Interior point $q \in Q$,
- Point $z \notin Q$ to be separated.

Obtain facet defining inequality $a^{T}(x-q) \leq 1$ by solving the LP

$$
\begin{array}{ll}
\max & a^{T}(z-q) \\
\text { s.t. } & a^{T}\left(x_{i}-q\right) \leq 1, \text { for all } i=1, \ldots, s \\
& a^{T} y_{j} \leq 0, \text { for all } j=1, \ldots, t \\
& a \in \mathbb{R}^{m}
\end{array}
$$

Adaptive Extension: Target Cuts (1/2)

Input for separation framework [Buchheim, Liers, and Oswald]

- Associated polyhedron $Q=\operatorname{conv}\left\{x_{1}, \ldots, x_{s}\right\}+\operatorname{cone}\left\{y_{1}, \ldots, y_{t}\right\}$,
- Interior point $q \in Q$,
- Point $z \notin Q$ to be separated.

Obtain facet defining inequality $a^{T}(x-q) \leq 1$ by solving the LP

$$
\begin{array}{ll}
\max & a^{T}(z-q) \\
\text { s.t. } & a^{T}\left(x_{i}-q\right) \leq 1, \text { for all } i=1, \ldots, s \\
& a^{T} y_{j} \leq 0, \text { for all } j=1, \ldots, t \\
& a \in \mathbb{R}^{m}
\end{array}
$$

For max-cut we set $Q=\operatorname{CUT}(G(W))$ for a subset $W \subseteq V$.

Adaptive Extension: Target Cuts (2/2)

Modified input

W.I.o.g. let the last ℓ vector entries correspond to the non-edges.

Adaptive Extension: Target Cuts (2/2)

Modified input

W.I.o.g. let the last ℓ vector entries correspond to the non-edges.

$$
\begin{aligned}
& z^{\prime}:=\left(z_{1}, \ldots, z_{m-\ell}, \quad L_{1}, \quad \ldots, L_{\ell}, \quad U_{1}, \quad \ldots, U_{\ell}\right), \\
& x_{i}^{\prime}:=\left(x_{i 1}, \ldots, x_{i, m-\ell}, \quad x_{i, m-\ell+1}, \ldots, x_{i m}, \quad x_{i, m-\ell+1}, \ldots, x_{i m}\right) \text {, } \\
& q^{\prime}:=\left(q_{1}, \ldots, q_{m-\ell}, \quad q_{m-\ell+1}, \ldots, q_{m}, \quad q_{m-\ell+1}, \ldots, q_{m}\right) \text {, } \\
& Q^{\prime}:=\operatorname{conv}\left\{x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right\}+\operatorname{cone}\left\{-e_{m-\ell+k}, e_{m+k} \mid k=1, \ldots, \ell\right\} .
\end{aligned}
$$

Adaptive Extension: Target Cuts (2/2)

Modified input

W.I.o.g. let the last ℓ vector entries correspond to the non-edges.

$$
\left.\begin{array}{rl}
z^{\prime} & :=\left(\begin{array}{lll}
z_{1}, \ldots, z_{m-\ell}, & L_{1}, & \ldots, L_{\ell},
\end{array} U_{1}, \quad \ldots, U_{\ell}\right.
\end{array}\right),
$$

Resulting target cut separation LP

$$
\begin{aligned}
\max & a^{\prime T}\left(z^{\prime}-q^{\prime}\right) \\
\text { s.t. } & a^{\prime T}\left(x_{i}^{\prime}-q^{\prime}\right) \leq 1, \text { for all } i=1, \ldots, s \\
- & a_{m-\ell+k}^{\prime}, a_{m+k}^{\prime} \leq 0, \text { for all } k=1, \ldots, \ell \\
& a^{\prime} \in \mathbb{R}^{m+\ell}
\end{aligned}
$$

Adaptive Extension: Target Cuts (2/2)

Modified input

W.I.o.g. let the last ℓ vector entries correspond to the non-edges.

$$
\left.\begin{array}{rl}
z^{\prime} & :=\left(\begin{array}{lll}
z_{1}, \ldots, z_{m-\ell}, & L_{1}, & \ldots, L_{\ell},
\end{array} U_{1}, \quad \ldots, U_{\ell}\right.
\end{array}\right),
$$

Resulting target cut separation LP

$$
\begin{aligned}
\max & a^{\prime T}\left(z^{\prime}-q^{\prime}\right) \\
\text { s.t. } & a^{\prime T}\left(x_{i}^{\prime}-q^{\prime}\right) \leq 1, \text { for all } i=1, \ldots, s \\
- & a_{m-\ell+k}^{\prime}, a_{m+k}^{\prime} \leq 0, \text { for all } k=1, \ldots, \ell \\
& a^{\prime} \in \mathbb{R}^{m+\ell}
\end{aligned}
$$

In an optimum solution $a^{\prime *}$ at most one of $a_{m-\ell+k}^{\prime *}$ and $a_{m+k}^{\prime *}$ can be nonzero for each $k=1, \ldots, \ell$.

Outline

(1) Max-Cut Problem

(2) Separation using Graph Contraction

(3) Computational Results

Computational Experiments

Used max-cut solver based on B\&C framework ABACUS.

Computational Experiments

Used max-cut solver based on B\&C framework ABACUS.

Problem classes

(1) Unconstrained quadratic $0 / 1$-optimization problems.
(2) Spin glass problems on toroidal grid graphs with:

- Uniformly distributed ± 1-weights.
- Gaussian distributed integral weights.

Computational Experiments

Used max-cut solver based on B\&C framework ABACUS.

Problem classes

(1) Unconstrained quadratic $0 / 1$-optimization problems.
(2) Spin glass problems on toroidal grid graphs with:

- Uniformly distributed ± 1-weights.
- Gaussian distributed integral weights.

Separation schemes

- Standard:
odd-cycles (spanning-tree heuristic, 3- / 4-cycles, exact separation).

Computational Experiments

Used max-cut solver based on B\&C framework ABACUS.

Problem classes

(1) Unconstrained quadratic $0 / 1$-optimization problems.
(2) Spin glass problems on toroidal grid graphs with:

- Uniformly distributed ± 1-weights.
- Gaussian distributed integral weights.

Separation schemes

- Standard:
odd-cycles (spanning-tree heuristic, 3- / 4-cycles, exact separation).
- Contraction:
standard scheme + contraction as heuristic OC-separator.

Computational Experiments

Used max-cut solver based on B\&C framework ABACUS.

Problem classes

(1) Unconstrained quadratic $0 / 1$-optimization problems.
(2) Spin glass problems on toroidal grid graphs with:

- Uniformly distributed ± 1-weights.
- Gaussian distributed integral weights.

Separation schemes

- Standard:
odd-cycles (spanning-tree heuristic, 3- / 4-cycles, exact separation).
- Contraction:
standard scheme + contraction as heuristic OC-separator.
- Extension:
contraction scheme + separation of bicycle- p-wheels, hypermetric inequalities and target cuts on the extended LP solution.

Unconstrained Quadratic 0/1-Optimization Problems

Running time of Beasley instances (250 nodes, density 0.1)

[Intel Xeon 2.8 GHz, 8GB shared RAM.]

Spin Glass Problems with Uniformly Distributed ± 1-Weights

Average running time of 10 random instances per grid size

[Intel Xeon 2.8 GHz , 8GB shared RAM. Running time capped to 10 h per instance.]

Spin Glass Problems with Gaussian Distributed Integral Weights

Average running time of 10 random instances per grid size

[Intel Xeon 2.8 GHz , 8GB shared RAM. Running time capped to 10 h per instance.]

Conclusion and Future Work

Separation using graph contraction

- Enables the use of separation techniques for dense / complete graphs on sparse graphs.
- Accelerates the exact solution of the max-cut problem for the examined classes of spin glass problems.
- Acceleration is mainly due to the use of contraction as heuristic odd-cycle separator.

Conclusion and Future Work

Separation using graph contraction

- Enables the use of separation techniques for dense / complete graphs on sparse graphs.
- Accelerates the exact solution of the max-cut problem for the examined classes of spin glass problems.
- Acceleration is mainly due to the use of contraction as heuristic odd-cycle separator.

Future work

- Develop special branching rules.
- Determine good parameter settings.
- Further computational experiments.

Conclusion and Future Work

Separation using graph contraction

- Enables the use of separation techniques for dense / complete graphs on sparse graphs.
- Accelerates the exact solution of the max-cut problem for the examined classes of spin glass problems.
- Acceleration is mainly due to the use of contraction as heuristic odd-cycle separator.

Future work

- Develop special branching rules.
- Determine good parameter settings.
- Further computational experiments.

Thank you for your attention!

