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Max-cut problem

Definition

Let G = (V,E, c) be an undirected weighted
graph.

Any S ⊆ V induces a set of edges δ(S) with
exactly one endpoint in S. δ(S) is called a
cut of G with shores S and V \S.

Finding a cut with maximum aggregate edge
weight is known as max-cut problem.

Applications

quadratic +/–1 resp. 0/1 optimization,

determining ground states of Ising spin glasses.
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Related polytopes

Cut polytope CUT(G)

Convex hull of the incidence vectors of all
cuts of G.

Cycle polytope M(G)

Relaxation of the cut polytope with linear
description CUT(K3)

x(F )− x(C\F ) ≤ |F | − 1, for all F ⊆ C, |F | odd,
for each cycle C of G,

xe ∈ [0, 1], e ∈ E.

CUT(G) and M(G) have exactly the same integral points.
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State of the art

Algorithms

Branch&Cut (possibly combined with
Semidefinite Programming) as exact
method,

most techniques are associated with
dense/complete graphs.

Handling sparse graphs

trivial approach:
artificial completion using edges with weight zero,

major drawback:
increase in number of variables/computational difficulty.
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An example

(4× 4)-grid with 16 nodes and 24 edges.

W.r.t. a vector z ∈ M(G) \CUT(G) the edge
set decomposes into:

0-edges,

1-edges,

fractional edges.

Artificial completion would require 96 additional edges.
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Outline of the shrinking approach

Input: vector z ∈ M(G)\CUT(G).

z
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z̄

z̄′ (ā′, ᾱ′)

(c̄, γ̄)

(c̃, γ̃)

(c, γ)

Switching
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Extension
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Lifting

Undo switching G

Ḡ

Ḡ′
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Outline of the shrinking approach

Transform 1-edges into 0-edges without affecting original 0-edges.
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Switching

z ∈ M(G) implies existence of a cut that
contains

all 1-edges but no 0-edges.

Switching z alongside this cut

only affects cut edges,

transforms all 1-edges into 0-edges,

may alter values of fractional edges.

Switched vector z̃ has only fractional and 0-edges.
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Outline of the shrinking approach

Shrink 0-edges.
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Shrinking

Consider the graph G0 induced by the
0-edges of the switched vector z̃.

1 determine connected components of G0,

2 shrink each component to a supernode.

Shrunk vector z̄ has only fractional edges. Associated graph Ḡ may
not be complete.
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Outline of the shrinking approach

Introduce artificial values for missing edges.
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Extension

Assign artificial values to missing edges.
Extended vector z̄′ shall be in M(Ḡ′).

Idea

New cycles in the extended graph consist of

an artificial edge and a connecting path.

w1 w2

w3 w4

Feasible artificial values

Use shortest-path algorithm to compute range [ξl, ξu] ⊆ [0, 1] of
feasible artificial values for each missing edge.

ξl := max {z̄(F )− z̄(P \ F )− |F | + 1 | F ⊆ P, |F | odd, P connecting path},
ξu := min {−z̄(F ) + z̄(P \ F ) + |F | | F ⊆ P, |F | even, P connecting path}.
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Outline of the shrinking approach

Separate extended vector using techniques for complete graphs.
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(c̄, γ̄)

(c̃, γ̃)

(c, γ)

Switching

Shrinking

Extension

Separation

Projection

Lifting

Undo switching G

Ḡ
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Outline of the shrinking approach

Project out coefficients related to missing edges.
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Projection

Separation → violated inequality ā′ T x̄′ ≤ ᾱ′

(denoted (ā′, ᾱ′)). Missing edges may have
non-zero coefficients!

Project out artificial non-zero coefficients

add multiples of suited valid inequalities,

odd-cycle inequalities defining the bounds
ξl, ξu are possible candidates.

(· · · ā
′

e · · · ā
′

f · · · ᾱ
′),

In the projected inequality all coefficients of missing edges are zero.
Truncation → (c̄, γ̄).
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e · · · · · · · · · β̄′

1
)−

,

(· · · · · · · · · ā′
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Outline of the shrinking approach

Lift inequality.
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Lifting

Required information

When shrinking edge e = (h, t) store sets:

H = { exclusive neighbors of h },
T = { exclusive neighbors of t },
B = { common neighbors of h and t }.

h t
e

H TBH TB

Lift the inequality

distribute coefficients of edges of the shrunk graph

to edges of the
original graph w.r.t. above sets,

edge e gets coefficient −min {
∑

v∈T |c̄wv|,
∑

v∈H |c̄wv| }.
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Outline of the shrinking approach

Switch back inequality.
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First computational experiments

Implementation in C++ using the B&C framework ABACUS.

Examined problem classes

2d/3d torus graphs related to spin glass problems. Edge weights:

±1 (probability 0.5 for positive weight),

Gaussian distributed.

Benchmark settings

Compute B&C root bound with following separator settings:

1 no shrink: SHOC, 4-cycles, exact odd-cycles.

2 bike: additional bicycle-p-wheels on shrunk graph.

3 target: additional target cuts on shrunk graph.
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Tentative results compared to “no shrink” setting

2d torus graphs

Setting plus-minus gauss

Gap #LPs Time Gap #LPs Time

bike ? H 30 % H 20 % ? H 79 % H 58 %

target ? H 30 % H 17 % ? H 79 % H 44 %

3d torus graphs

Setting plus-minus gauss

Gap #LPs Time Gap #LPs Time

bike H 0.8% N 39 % N 8233% H 6.3% N 13 % N 470%

target H 0.1% H 8% N 296% H 4.4% N 5% N 90 %
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Conclusion and future work

Conclusion

Separation method for max-cut problems based on graph shrinking:

enables transfer of separation techniques from dense/complete
graphs to sparse graphs,

shows potential to improve solvability of max-cut problems at
least for certain problem classes.

Future work

identify and eliminate bottlenecks,

test different perturbations on ±1-torus graphs,

test different shrinking orders (e.g. randomization),

develop alternative to usage of cycle polytope M(G).
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Thank you!

Thank you for your attention!
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