Lifting and Separation Procedures for the Cut Polytope

Thorsten Bonato

Research Group Discrete and Combinatorial Optimization University of Heidelberg
$6^{\text {th }}$ Conference of PhD Students in Computer Science Szeged, July 3, 2008

Outline

(1) Introduction
(2) Shrinking approach
(3) Computational results, conclusion and future work

(1) Introduction

(2) Shrinking approach

3 Computational results, conclusion and future work

Max-cut problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Max-cut problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Any $S \subseteq V$ induces a set of edges $\delta(S)$ with exactly one endpoint in $S . \delta(S)$ is called a cut of G with shores S and $V \backslash S$.

Max-cut problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Any $S \subseteq V$ induces a set of edges $\delta(S)$ with exactly one endpoint in $S . \delta(S)$ is called a cut of G with shores S and $V \backslash S$.

Finding a cut with maximum aggregate edge weight is known as max-cut problem.

Max-cut problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Any $S \subseteq V$ induces a set of edges $\delta(S)$ with exactly one endpoint in $S . \delta(S)$ is called a cut of G with shores S and $V \backslash S$.

Finding a cut with maximum aggregate edge weight is known as max-cut problem.

Applications

- quadratic $+/-1$ resp. $0 / 1$ optimization,
- determining ground states of Ising spin glasses.

Related polytopes

Cut polytope $\operatorname{CUT}(G)$

Convex hull of the incidence vectors of all cuts of G.

Cycle polytope $\mathrm{M}(G)$

Relaxation of the cut polytope with linear description

$$
\begin{aligned}
x(F)-x(C \backslash F) \leq|F|-1, & \text { for all } F \subseteq C,|F| \text { odd, } \\
& \text { for each cycle } C \text { of } G, \\
x_{e} \in[0,1], & e \in E .
\end{aligned}
$$

Related polytopes

Cut polytope $\operatorname{CUT}(G)$

Convex hull of the incidence vectors of all cuts of G.

Cycle polytope $\mathrm{M}(G)$

Relaxation of the cut polytope with linear description

$$
\begin{aligned}
x(F)-x(C \backslash F) \leq|F|-1, & \text { for all } F \subseteq C,|F| \text { odd, } \\
& \text { for each cycle } C \text { of } G, \\
x_{e} \in[0,1], & e \in E .
\end{aligned}
$$

$\operatorname{CUT}(G)$ and $\mathrm{M}(G)$ have exactly the same integral points.

State of the art

Algorithms

- Branch\&Cut (possibly combined with Semidefinite Programming) as exact method,
- most techniques are associated with dense/complete graphs.

State of the art

Algorithms

- Branch\&Cut (possibly combined with Semidefinite Programming) as exact method,
- most techniques are associated with dense/complete graphs.

Handling sparse graphs

State of the art

Algorithms

- Branch\&Cut (possibly combined with Semidefinite Programming) as exact method,
- most techniques are associated with dense/complete graphs.

Handling sparse graphs

- trivial approach:
artificial completion using edges with weight zero,
- major drawback:
increase in number of variables/computational difficulty.

Outline

(1) Introduction

(2) Shrinking approach

(3) Computational results, conclusion and future work

An example

(4×4)-grid with 16 nodes and 24 edges.

An example

(4×4)-grid with 16 nodes and 24 edges.
W.r.t. a vector $z \in \mathrm{M}(G) \backslash \operatorname{CUT}(G)$ the edge set decomposes into:

An example

(4×4)-grid with 16 nodes and 24 edges.
W.r.t. a vector $z \in \mathrm{M}(G) \backslash \operatorname{CUT}(G)$ the edge set decomposes into:

- 0-edges,

An example

(4×4)-grid with 16 nodes and 24 edges.
W.r.t. a vector $z \in \mathrm{M}(G) \backslash \operatorname{CUT}(G)$ the edge set decomposes into:

- 0-edges,
- 1-edges,

An example

(4×4)-grid with 16 nodes and 24 edges.
W.r.t. a vector $z \in \mathrm{M}(G) \backslash \operatorname{CUT}(G)$ the edge set decomposes into:

- 0-edges,
- 1-edges,
- fractional edges.

An example

(4×4)-grid with 16 nodes and 24 edges.
W.r.t. a vector $z \in \mathrm{M}(G) \backslash \operatorname{CUT}(G)$ the edge set decomposes into:

- 0-edges,
- 1-edges,
- fractional edges.

Artificial completion would require 96 additional edges.

Outline of the shrinking approach

Input: vector $z \in \mathrm{M}(G) \backslash \operatorname{CUT}(G)$.

Outline of the shrinking approach

Transform 1-edges into 0-edges without affecting original 0-edges.

Switching

$z \in \mathrm{M}(G)$ implies existence of a cut that contains

Switching

$z \in \mathrm{M}(G)$ implies existence of a cut that contains all 1-edges

Switching

$z \in \mathrm{M}(G)$ implies existence of a cut that contains all 1-edges but no 0-edges.

Switching

$z \in \mathrm{M}(G)$ implies existence of a cut that contains all 1-edges but no 0-edges.

Switching z alongside this cut

- only affects cut edges,

Switching

$z \in \mathrm{M}(G)$ implies existence of a cut that contains all 1-edges but no 0-edges.

Switching z alongside this cut

- only affects cut edges,
- transforms all 1 -edges into 0-edges,

Switching

$z \in \mathrm{M}(G)$ implies existence of a cut that contains all 1-edges but no 0-edges.

Switching z alongside this cut

- only affects cut edges,
- transforms all 1-edges into 0-edges,
- may alter values of fractional edges.

Switching

$z \in \mathrm{M}(G)$ implies existence of a cut that contains all 1-edges but no 0-edges.

Switching z alongside this cut

- only affects cut edges,
- transforms all 1-edges into 0-edges,
- may alter values of fractional edges.

Switched vector \tilde{z} has only fractional and 0 -edges.

Outline of the shrinking approach

Shrink 0-edges.

Shrinking

Consider the graph G_{0} induced by the 0 -edges of the switched vector \tilde{z}.

Shrinking

Consider the graph G_{0} induced by the 0 -edges of the switched vector \tilde{z}.
(1) determine connected components of G_{0},

Shrinking

Consider the graph G_{0} induced by the 0 -edges of the switched vector \tilde{z}.
(1) determine connected components of G_{0},
(2) shrink each component to a supernode.

Shrinking

Shrunk vector \bar{z} has only fractional edges. Associated graph \bar{G} may not be complete.

Outline of the shrinking approach

Introduce artificial values for missing edges.

Extension

Assign artificial values to missing edges. Extended vector \bar{z}^{\prime} shall be in $\mathrm{M}\left(\bar{G}^{\prime}\right)$.

Extension

Assign artificial values to missing edges. Extended vector \bar{z}^{\prime} shall be in $\mathrm{M}\left(\bar{G}^{\prime}\right)$.

Idea

New cycles in the extended graph consist of

Extension

Assign artificial values to missing edges. Extended vector \bar{z}^{\prime} shall be in $\mathrm{M}\left(\bar{G}^{\prime}\right)$.

Idea

New cycles in the extended graph consist of an artificial edge

Extension

Assign artificial values to missing edges. Extended vector \bar{z}^{\prime} shall be in $\mathrm{M}\left(\bar{G}^{\prime}\right)$.

Idea

New cycles in the extended graph consist of an artificial edge and a connecting path.

Extension

Assign artificial values to missing edges. Extended vector \bar{z}^{\prime} shall be in $\mathrm{M}\left(\bar{G}^{\prime}\right)$.

Idea

New cycles in the extended graph consist of an artificial edge and a connecting path.

Feasible artificial values

Use shortest-path algorithm to compute range $\left[\xi_{l}, \xi_{u}\right] \subseteq[0,1]$ of feasible artificial values for each missing edge.

$$
\begin{aligned}
\xi_{l}:=\max \{\bar{z}(F)-\bar{z}(P \backslash F)-|F|+1 & |F \subseteq P,|F| \text { odd, } P \text { connecting path }\} \\
\xi_{u}:=\min \{-\bar{z}(F)+\bar{z}(P \backslash F)+|F| & |F \subseteq P,|F| \text { even, } P \text { connecting path }\} .
\end{aligned}
$$

Outline of the shrinking approach

Separate extended vector using techniques for complete graphs.

Outline of the shrinking approach

Project out coefficients related to missing edges.

Projection

Separation \rightarrow violated inequality $\bar{a}^{T T} \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$ (denoted $\left(\bar{a}^{\prime}, \bar{\alpha}^{\prime}\right)$). Missing edges may have

$$
\left(\cdots \bar{a}_{e}^{\prime} \cdots \quad \bar{a}_{f}^{\prime} \cdots, \bar{\alpha}^{\prime}\right)
$$ non-zero coefficients!

Projection

Separation \rightarrow violated inequality $\bar{a}^{T T} \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$ (denoted $\left(\bar{a}^{\prime}, \bar{\alpha}^{\prime}\right)$). Missing edges may have non-zero coefficients!

$$
\begin{aligned}
& \left(\cdots \bar{a}_{e}^{\prime} \cdots \bar{a}_{f}^{\prime} \cdots, \bar{\alpha}^{\prime}\right) \\
& +\left(\cdots-\bar{a}_{e}^{\prime} \cdots \cdots \cdots, \bar{\beta}_{1}^{\prime}\right) \\
& +\left(\cdots \cdots \cdots-\bar{a}_{f}^{\prime} \cdots, \bar{\beta}_{2}^{\prime}\right)
\end{aligned}
$$

Project out artificial non-zero coefficients

- add multiples of suited valid inequalities,
- odd-cycle inequalities defining the bounds ξ_{l}, ξ_{u} are possible candidates.

Projection

Separation \rightarrow violated inequality $\bar{a}^{T} \bar{x}^{\prime} \leq \bar{\alpha}^{\prime}$ (denoted $\left(\bar{a}^{\prime}, \bar{\alpha}^{\prime}\right)$). Missing edges may have non-zero coefficients!

$$
\begin{aligned}
& \left(\cdots \bar{a}_{e}^{\prime} \cdots \bar{a}_{f}^{\prime} \cdots, \bar{\alpha}^{\prime}\right) \\
& +\left(\cdots-\bar{a}_{e}^{\prime} \cdots \cdots \cdots, \bar{\beta}_{1}^{\prime}\right) \\
& +\left(\cdots \cdots \cdots-\bar{a}_{f}^{\prime} \cdots, \bar{\beta}_{2}^{\prime}\right) \\
& =\left(\begin{array}{llllll}
\cdots & 0 & \cdots & 0 & \cdots, & \bar{\gamma}
\end{array}\right)
\end{aligned}
$$

Project out artificial non-zero coefficients

- add multiples of suited valid inequalities,
- odd-cycle inequalities defining the bounds ξ_{l}, ξ_{u} are possible candidates.

In the projected inequality all coefficients of missing edges are zero. Truncation $\rightarrow(\bar{c}, \bar{\gamma})$.

Outline of the shrinking approach

Lift inequality.

Lifting

Required information

When shrinking edge $e=(h, t)$ store sets:

- $H=\{$ exclusive neighbors of $h\}$,
- $T=\{$ exclusive neighbors of $t\}$,
- $B=\{$ common neighbors of h and $t\}$.

Lifting

Required information

When shrinking edge $e=(h, t)$ store sets:

- $H=\{$ exclusive neighbors of $h\}$,
- $T=\{$ exclusive neighbors of $t\}$,
- $B=\{$ common neighbors of h and $t\}$.

Lift the inequality

- distribute coefficients of edges of the shrunk graph

Lifting

Required information

When shrinking edge $e=(h, t)$ store sets:

- $H=\{$ exclusive neighbors of $h\}$,
- $T=\{$ exclusive neighbors of $t\}$,
- $B=\{$ common neighbors of h and $t\}$.

Lift the inequality

- distribute coefficients of edges of the shrunk graph to edges of the original graph w.r.t. above sets,

Lifting

Required information

When shrinking edge $e=(h, t)$ store sets:

- $H=\{$ exclusive neighbors of $h\}$,
- $T=\{$ exclusive neighbors of $t\}$,
- $B=\{$ common neighbors of h and $t\}$.

Lift the inequality

- distribute coefficients of edges of the shrunk graph to edges of the original graph w.r.t. above sets,
- edge e gets coefficient $-\min \left\{\sum_{v \in T}\left|\bar{c}_{w v}\right|, \sum_{v \in H}\left|\bar{c}_{w v}\right|\right\}$.

Outline of the shrinking approach

Switch back inequality.

Outline

(1) Introduction

(2) Shrinking approach
(3) Computational results, conclusion and future work

First computational experiments

Implementation in $\mathrm{C}++$ using the $\mathrm{B} \& \mathrm{C}$ framework ABACUS .

First computational experiments

Implementation in $\mathrm{C}++$ using the $\mathrm{B} \& \mathrm{C}$ framework ABACUS .

Examined problem classes

2d/3d torus graphs related to spin glass problems. Edge weights:

- ± 1 (probability 0.5 for positive weight),
- Gaussian distributed.

First computational experiments

Implementation in $\mathrm{C}++$ using the $\mathrm{B} \& \mathrm{C}$ framework ABACUS .

Examined problem classes

2d/3d torus graphs related to spin glass problems. Edge weights:

- ± 1 (probability 0.5 for positive weight),
- Gaussian distributed.

Benchmark settings

Compute $\mathrm{B} \& \mathrm{C}$ root bound with following separator settings:
(1) no shrink: SHOC, 4-cycles, exact odd-cycles.
(2) bike: additional bicycle- p-wheels on shrunk graph.
(3) target: additional target cuts on shrunk graph.

Tentative results compared to＂no shrink＂setting

2d torus graphs

Setting	plus－minus			gauss		
	Gap	\＃LPs	Time	Gap	\＃LPs	Time
bike	\star	マ 30%	マ 20 \％	＊	マ 79%	マ 58%
target	＊	－ 30%	マ 17%	＊	マ 79%	－ 44%

3d torus graphs

Setting	plus－minus			gauss		
	Gap	\＃LPs	Time	Gap	\＃LPs	Time
bike	マ 0.8%	－ 39%	－ 8233%	マ 6.3%	－ 13%	－ 470%
target	マ 0.1 \％	マ 8%	－ 296%	V 4.4%	－5\％	வ 90%

Conclusion

Separation method for max-cut problems based on graph shrinking:

- enables transfer of separation techniques from dense/complete graphs to sparse graphs,
- shows potential to improve solvability of max-cut problems at least for certain problem classes.

Conclusion

Separation method for max-cut problems based on graph shrinking:

- enables transfer of separation techniques from dense/complete graphs to sparse graphs,
- shows potential to improve solvability of max-cut problems at least for certain problem classes.

Future work

- identify and eliminate bottlenecks,
- test different perturbations on ± 1-torus graphs,
- test different shrinking orders (e.g. randomization),
- develop alternative to usage of cycle polytope $M(G)$.

Acknowledgment

- Prof. G. Reinelt (University of Heidelberg)
- Dr. M. Oswald (University of Heidelberg)
- Prof. G. Rinaldi (IASI Rome)
- Prof. M. Jünger (University of Cologne)

Thank you!

Thank you for your attention!

