Selected Problems in Discrete Optimization

Marcus Oswald Thorsten Bonato
University of Heidelberg
Research Group Discrete Optimization

March 1, 2007

Overview

(1) Motivation

(2) Polynomial Problems
(3) $\mathcal{N} \mathcal{P}$-hard problems

Overview

(2) Polynomial Problems

(3) $\mathcal{N P}$-hard problems

Linear combinatorial optimization problem

Definition (Linear combinatorial optimization problem)

Let E be a finite set, $\mathcal{J} \subseteq 2^{E}$ the subset of feasible solutions and $c: E \rightarrow \mathbb{R}$ a function. The task is to determine a set $I^{*} \in \mathcal{J}$ such that $c\left(I^{*}\right)=\sum_{e \in I^{*}} c(e)$ is minimal (maximal).

Example (Traveling Salesman Problem)

We are given n points in the euclidean plane and want to determine a closed walk through all the points that visits each point exactly once and is as short as possible, i.e. a shortest tour.
$E:=$ set of connections between two points
$\mathrm{J}:=$ sets of connections building a tour

Linear combinatorial optimization problem

Definition (Linear combinatorial optimization problem)

Let E be a finite set, $\mathcal{J} \subseteq 2^{E}$ the subset of feasible solutions and $c: E \rightarrow \mathbb{R}$ a function. The task is to determine a set $I^{*} \in \mathcal{J}$ such that $c\left(I^{*}\right)=\sum_{e \in I^{*}} c(e)$ is minimal (maximal).

Example (Traveling Salesman Problem)

We are given n points in the euclidean plane and want to determine a closed walk through all the points that visits each point exactly once and is as short as possible, i.e. a shortest tour.
$E:=$ set of connections between two points
$\mathrm{J}:=$ sets of connections building a tour

Some examples for applications

Shortest paths

Compute a shortest connection between two points, e.g. route planning.

Network design

Connect a set of nodes with a communication network.
Cutting problems
Minimize the amount of waste when cutting paper webs.
Allocation of frequencies in a cellular phone network
Assign frequencies to the different antennas such that interferences are minimized and the coverage is maximized.

Aircrew scheduling

Find a feasible and cost-efficient allocation of available crews to the different flights.

Overview

(1) Motivation

(2) Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

(3) $\mathcal{N P}$-hard problems

Graph search

Graph search problem
 Let $G=(V, E)$ be an undirected graph. Determine a way to systematically visit all nodes.

Breadth-First-Search and Depth-First-Search

Graph search

Graph search problem

Let $G=(V, E)$ be an undirected graph. Determine a way to systematically visit all nodes.

Breadth-First-Search and Depth-First-Search

(a) Breadth-First-Search

(b) Depth-First-Search

Topological sort

Topological sort problem

Directed acyclic graphs are often used to indicate precedences among certain events. Determine a linear ordering of the events with respect to the given precedences, i.e. a so-called topological sort.

Example (Getting dressed)

Topological sort

Topological sort problem

Directed acyclic graphs are often used to indicate precedences among certain events. Determine a linear ordering of the events with respect to the given precedences, i.e. a so-called topological sort.

Example (Getting dressed)

Overview

(1) Motivation

(2) Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

(3) $\mathcal{N P}$-hard problems

Minimum spanning trees

Minimum spanning tree problem

Let $G=(V, E)$ be an undirected weighted graph with weights $c_{e}, e \in E$. Determine a connected acyclic subgraph $T=\left(V, E^{\prime}\right)$, $E^{\prime} \subseteq E$, with minimum weight.

Example (Power grid)

Minimum spanning trees

Minimum spanning tree problem

Let $G=(V, E)$ be an undirected weighted graph with weights $c_{e}, e \in E$. Determine a connected acyclic subgraph $T=\left(V, E^{\prime}\right)$, $E^{\prime} \subseteq E$, with minimum weight.

Example (Power grid)

Overview

(1) Motivation

(2) Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

(3) $\mathcal{N} \mathcal{P}$-hard problems

Shortest paths

Shortest path problem

Let $D=(V, A)$ be a weighted digraph with weights $c_{e}, e \in A$, and let $s, t \in V$ be two nodes. Determine an (s, t)-path within D with minimum weight.

Example (Route planning)

Shortest paths

Shortest path problem

Let $D=(V, A)$ be a weighted digraph with weights $c_{e}, e \in A$, and let $s, t \in V$ be two nodes. Determine an (s, t)-path within D with minimum weight.

Example (Route planning)

Bottleneck problem

Bottleneck problem

Let $D=(V, A)$ be a weighted digraph with weights $c_{e}, e \in A$, and let $s, t \in V$ be two nodes. Determine an (s, t)-path within D whose shortest edge has maximum length, i.e. solve

$$
\max _{P(s, t) \text {-path }} \min _{e \in P} c_{e} .
$$

Example (Large goods vehicle routing)

Consider a large goods vehicle (LGV). When planning a transport, the overall length of the route is of minor importance. Instead, it is vital that the lowest vertical clearance of a bridge on the way is maximized over all possible routes.

Bottleneck problem

Bottleneck problem

Let $D=(V, A)$ be a weighted digraph with weights $c_{e}, e \in A$, and let $s, t \in V$ be two nodes. Determine an (s, t)-path within D whose shortest edge has maximum length, i.e. solve

$$
\max _{P(s, t) \text {-path }} \min _{e \in P} c_{e}
$$

Example (Large goods vehicle routing)

Consider a large goods vehicle (LGV). When planning a transport, the overall length of the route is of minor importance. Instead, it is vital that the lowest vertical clearance of a bridge on the way is maximized over all possible routes.

Overview

(1) Motivation

(2) Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

(3) $\mathcal{N P}$-hard problems

Matchings on bipartite graphs

Perfect matching problem on bipartite graphs

Let $K_{n, n}=\left(V_{1} \uplus V_{2}, E\right)$ be the complete bipartite graph with $2 n$ nodes and edge weights $c_{i j}, i \in V_{1}, j \in V_{2}$. Determine a perfect matching on $K_{n, n}$ with minimum weight.

Example (Marriage problem)

Matchings on bipartite graphs

Perfect matching problem on bipartite graphs

Let $K_{n, n}=\left(V_{1} \uplus V_{2}, E\right)$ be the complete bipartite graph with $2 n$ nodes and edge weights $c_{i j}, i \in V_{1}, j \in V_{2}$. Determine a perfect matching on $K_{n, n}$ with minimum weight.

Example (Marriage problem)

Overview

(1) Motivation

(2) Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

(3) $\mathcal{N} \mathcal{P}$-hard problems

Maximum flows

Maximum (s, t)-flow problem

Let $D=(V, A)$ be a weighted digraph with edge capacities $c_{e}, e \in A$, and let $s, t \in V$ be two nodes. Determine a maximum (s, t)-flow.

Example (Maximal fluid quantity in pipeline networks)

Maximum flows

Maximum (s, t)-flow problem

Let $D=(V, A)$ be a weighted digraph with edge capacities $c_{e}, e \in A$, and let $s, t \in V$ be two nodes. Determine a maximum (s, t)-flow.

Example (Maximal fluid quantity in pipeline networks)

(a) pipeline network with capacities

(b) maximum fluid transfer

Data integrity

Data integrity problem

Let $D \in \mathbb{N}^{p \times q}$ be a matrix. Denote with $r_{i}, c_{j}>0$ the i-th row sum and the j-th column sum respectively. Given these sums and a set of known entries Y, determine all entries whose value can be extracted from this information.

Example

Data integrity

Data integrity problem

Let $D \in \mathbb{N}^{p \times q}$ be a matrix. Denote with $r_{i}, c_{j}>0$ the i-th row sum and the j-th column sum respectively. Given these sums and a set of known entries Y, determine all entries whose value can be extracted from this information.

Example

Overview

(1) Motivation
(2) Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

(3) $\mathcal{N P}$-hard problems

Minimum cuts

Minimum cut problem

Let $G=(V, E)$ be a connected undirected weighted graph with weights $c_{e}>0, e \in E$. Determine a node set $\emptyset \neq W \subsetneq V$ that minimizes the weight sum of all edges with exactly one node in W :

$$
\min _{\emptyset \neq W \subsetneq V} c(\delta(W)) .
$$

Example (Reliability of communication networks)

Minimum cuts

Minimum cut problem

Let $G=(V, E)$ be a connected undirected weighted graph with weights $c_{e}>0, e \in E$. Determine a node set $\emptyset \neq W \subsetneq V$ that minimizes the weight sum of all edges with exactly one node in W :

$$
\min _{\emptyset \neq W \subsetneq V} c(\delta(W))
$$

Example (Reliability of communication networks)

At least three edges have to be removed in order to destroy the connectivity of the network.

Overview

(1) Motivation

(2) Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

(3) $\mathcal{N P}$-hard problems

Minimum cost flows

Minimum cost flow problem

Let $D=(V, A)$ be a digraph with edge capacities $c_{e}, e \in A$, edge costs $w_{e}, e \in A$, and node balances $b_{u}, u \in V$. Determine a flow with minimum costs that fulfills all node balances.

Example (Transportation problem)

Minimum cost flows

Minimum cost flow problem

Let $D=(V, A)$ be a digraph with edge capacities $c_{e}, e \in A$, edge costs $w_{e}, e \in A$, and node balances $b_{u}, u \in V$. Determine a flow with minimum costs that fulfills all node balances.

Example (Transportation problem)

[0]
(a) transportation network

(b) minimum cost flow

Overview

(1) Motivation

(2) Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

(3) $\mathcal{N P}$-hard problems

Linear programming

Standard LP-formulation

Let $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}, c \in \mathbb{R}^{m}$. The standard formulation of a linear program is as follows:

$$
\begin{array}{crl}
\min & c^{\top} x & \\
\text { s.t. } & A x & \leq b \\
& x & \geq 0
\end{array}
$$

Remark

Although the running time of the widely used Simplex method is exponential in worst case, linear programming itself is polynomial $(\rightarrow$ Ellipsoid method)

Linear programming

Standard LP-formulation

Let $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}, c \in \mathbb{R}^{m}$. The standard formulation of a linear program is as follows:

$$
\begin{array}{lrl}
\min & c^{\top} x & \\
\text { s.t. } & A x & \leq b \\
& x & \geq 0
\end{array}
$$

Remark

Although the running time of the widely used Simplex method is exponential in worst case, linear programming itself is polynomial (\rightarrow Ellipsoid method).

Linear programming (cont.)

Example

Overview

(1) Motivation

(2) Polynomial Problems

(3) $\mathcal{N P}$-hard problems

- Integer and mixed integer programming
- Traveling salesman problem

Integer and mixed integer programming

IP- and MIP-formulation

Let $A \in \mathbb{R}^{n \times m}, D \in \mathbb{R}^{n \times l}, b \in \mathbb{R}^{n}, d \in \mathbb{R}^{l}, c \in \mathbb{R}^{m}$. The standard formulations of an integer program and a mixed integer program respectively are as follows:

$$
\left.\begin{array}{crrrl}
\min & d^{\top} y & & \min & c^{\top} x+d^{\top} y \\
\text { s.t. } & D y & \leq b & \text { s.t. } & A x+D y
\end{array}\right)
$$

Comparison of the feasible regions of LP, IP and MIP

Integer and mixed integer programming

IP- and MIP-formulation

Let $A \in \mathbb{R}^{n \times m}, D \in \mathbb{R}^{n \times l}, b \in \mathbb{R}^{n}, d \in \mathbb{R}^{l}, c \in \mathbb{R}^{m}$. The standard formulations of an integer program and a mixed integer program respectively are as follows:

$$
\begin{array}{rrrrrr}
\min & d^{\top} y & & \min & c^{\top} x & +d^{\top} y \\
\text { s.t. } & D y & \leq b & \text { s.t. } & A x+D y & \leq b \\
& y & \in \mathbb{Z}_{+}^{l} & & x & \\
& & & & & \\
& & & \mathbb{Z}_{+}^{l}
\end{array}
$$

Comparison of the feasible regions of LP, IP and MIP

(a) LP

(b) IP

(c) MIP

Overview

(1) Motivation

(2) Polynomial Problems

(3) $\mathcal{N P}$-hard problems

- Integer and mixed integer programming
- Traveling salesman problem

Traveling salesman problem

Traveling salesman problem (TSP)

A salesman has to visit $n-1$ cities. Find a cost-efficient tour through all cities that starts and ends in his hometown and visits each of the cities exactly once.

IP-formulation
Let $K_{n}=(V, E)$ be the complete graph with n nodes and edge weights $c_{e}, e \in E$. A possible IP-formulation of the TSP is the following

Traveling salesman problem

Traveling salesman problem (TSP)

A salesman has to visit $n-1$ cities. Find a cost-efficient tour through all cities that starts and ends in his hometown and visits each of the cities exactly once.

IP-formulation

Let $K_{n}=(V, E)$ be the complete graph with n nodes and edge weights $c_{e}, e \in E$. A possible IP-formulation of the TSP is the following:

$$
\begin{array}{clll}
\min & \sum_{e \in E} c_{e} x_{e} & & \\
\mathrm{s.t.} & \sum_{e \in \delta(v)} x_{e} & =2, & \\
& & \sum_{e \in \delta(U)} x_{e} \geq 2, & \\
& x_{e} & \in 2 \leq|U| \leq\left\lfloor\frac{|V|}{2}\right\rfloor \\
& \left.x_{e}\right\rfloor, & \forall e \in E
\end{array}
$$

Traveling salesman problem (cont.)

Example

For K_{n} we have $\frac{(n-1)!}{2}$ different tours. Consider K_{4} with the following edge weights

The three possible tours are

with weights 7,8 and 9 respectively. Hence, the optimal tour is the first one with minimal weight 7 .

Thank you!

We would like to thank you for your interest and your attention!

