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Motivation

Linear combinatorial optimization problem

Definition (Linear combinatorial optimization problem)

Let E be a finite set, I ⊆ 2E the subset of feasible solutions and
c : E → R a function. The task is to determine a set I∗ ∈ I such that
c(I∗) =

∑
e∈I∗ c(e) is minimal (maximal).

Example (Traveling Salesman Problem)

We are given n points in the euclidean plane and want to determine a
closed walk through all the points that visits each point exactly once
and is as short as possible, i.e. a shortest tour.

E := set of connections between two points

I := sets of connections building a tour
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Motivation

Some examples for applications

Shortest paths
Compute a shortest connection between two points, e.g. route
planning.

Network design
Connect a set of nodes with a communication network.

Cutting problems
Minimize the amount of waste when cutting paper webs.

Allocation of frequencies in a cellular phone network
Assign frequencies to the different antennas such that interferences
are minimized and the coverage is maximized.

Aircrew scheduling
Find a feasible and cost-efficient allocation of available crews to the
different flights.
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Polynomial Problems Basic graph algorithms

Graph search

Graph search problem

Let G = (V,E) be an undirected graph. Determine a way to
systematically visit all nodes.

Breadth-First-Search and Depth-First-Search
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Polynomial Problems Basic graph algorithms

Topological sort

Topological sort problem

Directed acyclic graphs are often used to indicate precedences among
certain events. Determine a linear ordering of the events with respect
to the given precedences, i.e. a so-called topological sort.

Example (Getting dressed)

undershorts socks

pants shoes

belt shirt

tiejacket

socks undershorts pants shoes shirt belt tie jacket

(Cormen, Leiserson, Rivest. Introduction to algorithms)
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Polynomial Problems Minimum spanning trees
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Polynomial Problems Minimum spanning trees

Minimum spanning trees

Minimum spanning tree problem

Let G = (V,E) be an undirected weighted graph with weights
ce, e ∈ E. Determine a connected acyclic subgraph T = (V,E′),
E′ ⊆ E, with minimum weight.

Example (Power grid)
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Polynomial Problems Shortest paths

Shortest paths

Shortest path problem

Let D = (V,A) be a weighted digraph with weights ce, e ∈ A, and let
s, t ∈ V be two nodes. Determine an (s, t)-path within D with
minimum weight.

Example (Route planning)
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Polynomial Problems Shortest paths

Bottleneck problem

Bottleneck problem

Let D = (V,A) be a weighted digraph with weights ce, e ∈ A, and let
s, t ∈ V be two nodes. Determine an (s, t)-path within D whose
shortest edge has maximum length, i.e. solve

max
P (s,t)-path

min
e∈P

ce.

Example (Large goods vehicle routing)

Consider a large goods vehicle (LGV). When planning a transport, the
overall length of the route is of minor importance. Instead, it is vital
that the lowest vertical clearance of a bridge on the way is maximized
over all possible routes.
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Polynomial Problems Matchings

Matchings on bipartite graphs

Perfect matching problem on bipartite graphs

Let Kn,n = (V1 ] V2, E) be the complete bipartite graph with 2n
nodes and edge weights cij , i ∈ V1, j ∈ V2. Determine a perfect
matching on Kn,n with minimum weight.

Example (Marriage problem)

C :=









3 5 8 4

9 9 9 6

6 7 8 4

3 8 9 2









V1 V2
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Polynomial Problems Maximum flows

Maximum flows

Maximum (s, t)-flow problem

Let D = (V,A) be a weighted digraph with edge capacities ce, e ∈ A,
and let s, t ∈ V be two nodes. Determine a maximum (s, t)-flow.

Example (Maximal fluid quantity in pipeline networks)
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(b) maximum fluid transfer
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Polynomial Problems Maximum flows

Data integrity

Data integrity problem

Let D ∈ Np×q be a matrix. Denote with ri, cj > 0 the i-th row sum
and the j-th column sum respectively. Given these sums and a set of
known entries Y , determine all entries whose value can be extracted
from this information.

Example

1 4 1

1 0 1 0

2 0 2 0

3 1 1 1

s t

c1

c2

c3

r1

r2

r3

d11

d12

d13

d21

d22

d23

d31

d32

d33
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Polynomial Problems Minimum cuts

Minimum cuts

Minimum cut problem

Let G = (V,E) be a connected undirected weighted graph with
weights ce > 0, e ∈ E. Determine a node set ∅ 6= W ( V that
minimizes the weight sum of all edges with exactly one node in W :

min
∅6=W(V

c
(
δ(W )

)
.

Example (Reliability of communication networks)
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6

7

8

9

At least three edges have to be removed in order to destroy the connectivity of the network.
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Polynomial Problems Minimum cost flows
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Polynomial Problems Minimum cost flows

Minimum cost flows

Minimum cost flow problem

Let D = (V,A) be a digraph with edge capacities ce, e ∈ A, edge
costs we, e ∈ A, and node balances bu, u ∈ V . Determine a flow with
minimum costs that fulfills all node balances.

Example (Transportation problem)
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(b) minimum cost flow
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Polynomial Problems Linear programming

Linear programming

Standard LP-formulation

Let A ∈ Rn×m, b ∈ Rn, c ∈ Rm. The standard formulation of a linear
program is as follows:

min c>x
s.t. Ax ≤ b

x ≥ 0

Remark

Although the running time of the widely used Simplex method is
exponential in worst case, linear programming itself is polynomial
(→ Ellipsoid method).
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Polynomial Problems Linear programming

Linear programming (cont.)

Example

min −x1 + x2

s.t. −x1 + x2 ≤ 2 (1)

−x1 − 2x2 ≤ −5 (2)

x1 + x2 ≤ 7 (3)

2x1 − x2 ≤ 5 (4)

−x1 ≤ −1 (5)

x2 ≤ 4 (6)

1 2 3 4−1−2
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(−1, 1)

b
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NP-hard problems Integer and mixed integer programming
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NP-hard problems Integer and mixed integer programming

Integer and mixed integer programming

IP- and MIP-formulation

Let A ∈ Rn×m, D ∈ Rn×l, b ∈ Rn, d ∈ Rl, c ∈ Rm. The standard
formulations of an integer program and a mixed integer program
respectively are as follows:

min d>y min c>x + d>y
s.t. Dy ≤ b s.t. Ax + Dy ≤ b

y ∈ Z
l
+ x ≥ 0

y ∈ Z
l
+

Comparison of the feasible regions of LP, IP and MIP
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(a) LP

x1

x2

b

b

b

b

b

b

b

b

b

b

b

b
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b

(b) IP
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x2

b

(c) MIP
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NP-hard problems Traveling salesman problem
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NP-hard problems Traveling salesman problem

Traveling salesman problem

Traveling salesman problem (TSP)

A salesman has to visit n− 1 cities. Find a cost-efficient tour through
all cities that starts and ends in his hometown and visits each of the
cities exactly once.

IP-formulation

Let Kn = (V,E) be the complete graph with n nodes and edge
weights ce, e ∈ E. A possible IP-formulation of the TSP is the
following:

min
∑

e∈E cexe

s.t.
∑

e∈δ(v) xe = 2, ∀ v ∈ V∑
e∈δ(U) xe ≥ 2, ∀ 2 ≤ |U | ≤

⌊
|V |
2

⌋
xe ∈ {0, 1}, ∀ e ∈ E
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NP-hard problems Traveling salesman problem

Traveling salesman problem (cont.)

Example

For Kn we have (n−1)!
2 different tours. Consider K4 with the

following edge weights
2

1
3 2

3

1

The three possible tours are

with weights 7, 8 and 9 respectively. Hence, the optimal tour is the
first one with minimal weight 7.
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NP-hard problems Traveling salesman problem

Thank you!

We would like to thank you for your interest and your
attention!
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