Selected Problems in Discrete Optimization

Marcus Oswald Thorsten Bonato

University of Heidelberg Research Group Discrete Optimization

March 1, 2007

- 2 Polynomial Problems
- 3 \mathcal{NP} -hard problems

- 2 Polynomial Problems
- \bigcirc \mathcal{NP} -hard problems

Linear combinatorial optimization problem

Definition (Linear combinatorial optimization problem)

Let E be a finite set, $\mathbb{J} \subseteq 2^E$ the subset of feasible solutions and $c \colon E \to \mathbb{R}$ a function. The task is to determine a set $I^* \in \mathbb{J}$ such that $c(I^*) = \sum_{e \in I^*} c(e)$ is minimal (maximal).

Example (Traveling Salesman Problem)

We are given n points in the euclidean plane and want to determine a closed walk through all the points that visits each point exactly once and is as short as possible, i.e. a shortest tour.

E := set of connections between two points

 $\ensuremath{\mathbb{I}} := \mathsf{sets}$ of connections building a tour

Linear combinatorial optimization problem

Definition (Linear combinatorial optimization problem)

Let E be a finite set, $\mathfrak{I} \subseteq 2^E$ the subset of feasible solutions and $c \colon E \to \mathbb{R}$ a function. The task is to determine a set $I^* \in \mathfrak{I}$ such that $c(I^*) = \sum_{e \in I^*} c(e)$ is minimal (maximal).

Example (Traveling Salesman Problem)

We are given n points in the euclidean plane and want to determine a closed walk through all the points that visits each point exactly once and is as short as possible, i.e. a shortest tour.

- E := set of connections between two points
- $\ensuremath{\mathbb{I}} \mathrel{\mathop:}= \mathsf{sets}$ of connections building a tour

Some examples for applications

Shortest paths

Compute a shortest connection between two points, e.g. route planning.

Network design

Connect a set of nodes with a communication network.

Cutting problems

Minimize the amount of waste when cutting paper webs.

Allocation of frequencies in a cellular phone network

Assign frequencies to the different antennas such that interferences are minimized and the coverage is maximized.

Aircrew scheduling

Find a feasible and cost-efficient allocation of available crews to the different flights.

Motivation

2 Polynomial Problems

Basic graph algorithms

- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

3 \mathcal{NP} -hard problems

Graph search

Graph search problem

Let G = (V, E) be an undirected graph. Determine a way to systematically visit all nodes.

Breadth-First-Search and Depth-First-Search

Graph search

Graph search problem

Let G = (V, E) be an undirected graph. Determine a way to systematically visit all nodes.

Topological sort

Topological sort problem

Directed acyclic graphs are often used to indicate precedences among certain events. Determine a linear ordering of the events with respect to the given precedences, i.e. a so-called topological sort.

Example (Getting dressed)

Topological sort

Topological sort problem

Directed acyclic graphs are often used to indicate precedences among certain events. Determine a linear ordering of the events with respect to the given precedences, i.e. a so-called topological sort.

Motivation

2 Polynomial Problems

• Basic graph algorithms

• Minimum spanning trees

- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

3 \mathcal{NP} -hard problems

Minimum spanning trees

Minimum spanning tree problem

Let G = (V, E) be an undirected weighted graph with weights $c_e, e \in E$. Determine a connected acyclic subgraph T = (V, E'), $E' \subseteq E$, with minimum weight.

Example (Power grid)

Minimum spanning trees

Minimum spanning tree problem

Let G = (V, E) be an undirected weighted graph with weights $c_e, e \in E$. Determine a connected acyclic subgraph T = (V, E'), $E' \subseteq E$, with minimum weight.

Example (Power grid)

Motivation

2 Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees

• Shortest paths

- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

3 \mathcal{NP} -hard problems

Shortest paths

Shortest path problem

Let D = (V, A) be a weighted digraph with weights $c_e, e \in A$, and let $s, t \in V$ be two nodes. Determine an (s, t)-path within D with minimum weight.

Example (Route planning)

Shortest paths

Shortest path problem

Let D = (V, A) be a weighted digraph with weights $c_e, e \in A$, and let $s, t \in V$ be two nodes. Determine an (s, t)-path within D with minimum weight.

Example (Route planning)

Bottleneck problem

Bottleneck problem

Let D = (V, A) be a weighted digraph with weights $c_e, e \in A$, and let $s, t \in V$ be two nodes. Determine an (s, t)-path within D whose shortest edge has maximum length, i.e. solve

 $\max_{P(s,t)-\text{path}} \min_{e \in P} c_e.$

Example (Large goods vehicle routing)

Consider a large goods vehicle (LGV). When planning a transport, the overall length of the route is of minor importance. Instead, it is vital that the lowest vertical clearance of a bridge on the way is maximized over all possible routes.

Bottleneck problem

Bottleneck problem

Let D = (V, A) be a weighted digraph with weights $c_e, e \in A$, and let $s, t \in V$ be two nodes. Determine an (s, t)-path within D whose shortest edge has maximum length, i.e. solve

 $\max_{P(s,t)\text{-path}} \min_{e \in P} c_e.$

Example (Large goods vehicle routing)

Consider a large goods vehicle (LGV). When planning a transport, the overall length of the route is of minor importance. Instead, it is vital that the lowest vertical clearance of a bridge on the way is maximized over all possible routes.

Motivation

2 Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths

Matchings

- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

3 \mathcal{NP} -hard problems

Matchings on bipartite graphs

Perfect matching problem on bipartite graphs

Let $K_{n,n} = (V_1 \uplus V_2, E)$ be the complete bipartite graph with 2n nodes and edge weights c_{ij} , $i \in V_1$, $j \in V_2$. Determine a perfect matching on $K_{n,n}$ with minimum weight.

Example (Marriage problem)

Matchings on bipartite graphs

Perfect matching problem on bipartite graphs

Let $K_{n,n} = (V_1 \uplus V_2, E)$ be the complete bipartite graph with 2n nodes and edge weights c_{ij} , $i \in V_1$, $j \in V_2$. Determine a perfect matching on $K_{n,n}$ with minimum weight.

Motivation

2 Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings

Maximum flows

- Minimum cuts
- Minimum cost flows
- Linear programming

3 \mathcal{NP} -hard problems

Maximum flows

Maximum (s, t)-flow problem

Let D = (V, A) be a weighted digraph with edge capacities $c_e, e \in A$, and let $s, t \in V$ be two nodes. Determine a maximum (s, t)-flow.

Example (Maximal fluid quantity in pipeline networks)

Maximum flows

Maximum (s, t)-flow problem

Let D = (V, A) be a weighted digraph with edge capacities $c_e, e \in A$, and let $s, t \in V$ be two nodes. Determine a maximum (s, t)-flow.

Example (Maximal fluid quantity in pipeline networks)

Data integrity

Data integrity problem

Let $D \in \mathbb{N}^{p \times q}$ be a matrix. Denote with $r_i, c_j > 0$ the *i*-th row sum and the *j*-th column sum respectively. Given these sums and a set of known entries Y, determine all entries whose value can be extracted from this information.

Example

Data integrity

Data integrity problem

Let $D \in \mathbb{N}^{p \times q}$ be a matrix. Denote with $r_i, c_j > 0$ the *i*-th row sum and the *j*-th column sum respectively. Given these sums and a set of known entries Y, determine all entries whose value can be extracted from this information.

Motivation

2 Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows

Minimum cuts

- Minimum cost flows
- Linear programming

3 \mathcal{NP} -hard problems

Minimum cuts

Minimum cut problem

Let G = (V, E) be a connected undirected weighted graph with weights $c_e > 0$, $e \in E$. Determine a node set $\emptyset \neq W \subsetneq V$ that minimizes the weight sum of all edges with exactly one node in W:

 $\min_{\substack{ \emptyset \neq W \subsetneq V}} \ c \big(\delta(W) \big).$

Example (Reliability of communication networks)

Minimum cuts

Minimum cut problem

Let G = (V, E) be a connected undirected weighted graph with weights $c_e > 0$, $e \in E$. Determine a node set $\emptyset \neq W \subsetneq V$ that minimizes the weight sum of all edges with exactly one node in W:

 $\min_{\substack{\emptyset \neq W \subsetneq V}} c(\delta(W)).$

Example (Reliability of communication networks)

At least three edges have to be removed in order to destroy the connectivity of the network.

Motivation

2 Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts

Minimum cost flows

• Linear programming

\bigcirc \mathcal{NP} -hard problems

Minimum cost flows

Minimum cost flow problem

Let D = (V, A) be a digraph with edge capacities $c_e, e \in A$, edge costs $w_e, e \in A$, and node balances $b_u, u \in V$. Determine a flow with minimum costs that fulfills all node balances.

Example (Transportation problem)

Minimum cost flows

Minimum cost flow problem

Let D = (V, A) be a digraph with edge capacities $c_e, e \in A$, edge costs $w_e, e \in A$, and node balances $b_u, u \in V$. Determine a flow with minimum costs that fulfills all node balances.

Motivation

2 Polynomial Problems

- Basic graph algorithms
- Minimum spanning trees
- Shortest paths
- Matchings
- Maximum flows
- Minimum cuts
- Minimum cost flows
- Linear programming

\bigcirc \mathcal{NP} -hard problems

Linear programming

Standard LP-formulation

Let $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^m$. The standard formulation of a linear program is as follows:

 $\begin{array}{rll} \min & c^{\top}x \\ \text{s.t.} & Ax & \leq & b \\ & x & \geq & 0 \end{array}$

Remark

Although the running time of the widely used Simplex method is exponential in worst case, linear programming itself is polynomial (\rightarrow Ellipsoid method).

Linear programming

Standard LP-formulation

Let $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^m$. The standard formulation of a linear program is as follows:

$$\begin{array}{rll} \min & c^{\top}x \\ \text{s.t.} & Ax &\leq b \\ & x &\geq 0 \end{array}$$

Remark

Although the running time of the widely used Simplex method is exponential in worst case, linear programming itself is polynomial (\rightarrow Ellipsoid method).

Linear programming (cont.)

Example

2 Polynomial Problems

3 \mathcal{NP} -hard problems

• Integer and mixed integer programming

• Traveling salesman problem

Integer and mixed integer programming

IP- and MIP-formulation

Let $A \in \mathbb{R}^{n \times m}$, $D \in \mathbb{R}^{n \times l}$, $b \in \mathbb{R}^n$, $d \in \mathbb{R}^l$, $c \in \mathbb{R}^m$. The standard formulations of an integer program and a mixed integer program respectively are as follows:

Comparison of the feasible regions of LP, IP and MIP

Integer and mixed integer programming

IP- and MIP-formulation

Let $A \in \mathbb{R}^{n \times m}$, $D \in \mathbb{R}^{n \times l}$, $b \in \mathbb{R}^n$, $d \in \mathbb{R}^l$, $c \in \mathbb{R}^m$. The standard formulations of an integer program and a mixed integer program respectively are as follows:

M. Oswald, T. Bonato (Uni Heidelberg) Selected Problems in Discrete Optimization

Motivation

2 Polynomial Problems

3 \mathcal{NP} -hard problems

- Integer and mixed integer programming
- Traveling salesman problem

Traveling salesman problem

Traveling salesman problem (TSP)

A salesman has to visit n-1 cities. Find a cost-efficient tour through all cities that starts and ends in his hometown and visits each of the cities exactly once.

IP-formulation

Let $K_n = (V, E)$ be the complete graph with n nodes and edge weights $c_e, e \in E$. A possible IP-formulation of the TSP is the following:

Traveling salesman problem

Traveling salesman problem (TSP)

A salesman has to visit n-1 cities. Find a cost-efficient tour through all cities that starts and ends in his hometown and visits each of the cities exactly once.

IP-formulation

Let $K_n = (V, E)$ be the complete graph with n nodes and edge weights $c_e, e \in E$. A possible IP-formulation of the TSP is the following:

Traveling salesman problem (cont.)

Example

For K_n we have $\frac{(n-1)!}{2}$ different tours. Consider K_4 with the following edge weights

The three possible tours are

with weights $7,8 \ {\rm and} \ 9$ respectively. Hence, the optimal tour is the first one with minimal weight 7.

Thank you!

We would like to thank you for your interest and your attention!