Separation for the Max-Cut Problem using Target Cuts and Graph Contraction

Thorsten Bonato

Research Group Discrete and Combinatorial Optimization University of Heidelberg

Joint work with:
Gerhard Reinelt (University of Heidelberg)
Giovanni Rinaldi (IASI, Rome)
$1^{\text {st }}$ Alpen-Adria Workshop on Optimization Klagenfurt, June 4, 2010

Outline

(1) Max-Cut Problem
(2) Separation using Graph Contraction
(3) Target Cuts

4 Computational Results

Outline

(1) Max-Cut Problem

(2) Separation using Graph Contraction

(3) Target Cuts

4 Computational Results

Max-Cut Problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Max-Cut Problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Any $S \subseteq V$ induces a set $\delta(S)$ of edges with exactly one end in S. The set $\delta(S)$ is called a cut of G with shores S and $V \backslash S$.

Max-Cut Problem

Definition

Let $G=(V, E, c)$ be an undirected weighted graph.

Any $S \subseteq V$ induces a set $\delta(S)$ of edges with exactly one end in S. The set $\delta(S)$ is called a cut of G with shores S and $V \backslash S$.

Finding a cut with maximum aggregate edge weight is known as max-cut problem.

Related Polytopes

Cut polytope CUT(G)

Convex hull of all incidence vectors of cuts of G.

$\operatorname{CUT}\left(K_{3}\right)$

Related Polytopes

Cut polytope CUT(G)

Convex hull of all incidence vectors of cuts of G.

Semimetric polytope MET(G)

Relaxation of the max-cut IP formulation described by two inequality classes:

$\operatorname{CUT}\left(K_{3}\right)$

Odd-cycle: $\quad x(F)-x(C \backslash F) \leq|F|-1, \quad$ for each cycle C of G, for all $F \subseteq C,|F|$ odd.

Trivial: $0 \leq x_{e} \leq 1, \quad$ for all $e \in E$.

Outline

(1) Max-Cut Problem

(2) Separation using Graph Contraction

(3) Target Cuts

4 Computational Results

Outline of the Separation using Graph Contraction

Input: LP solution $z \in \operatorname{MET}(G) \backslash \operatorname{CUT}(G)$.

Outline of the Separation using Graph Contraction

Transform 1-edges into 0-edges.

Outline of the Separation using Graph Contraction

Contract 0-edges. Allows heuristic odd-cycle separation.

Outline of the Separation using Graph Contraction

Introduce artificial LP values for non-edges.

Outline of the Separation using Graph Contraction

Separate extended LP solution.

Outline of the Separation using Graph Contraction

Project out nonzero coefficients related to non-edges.

Outline of the Separation using Graph Contraction

Lift inequality.

Outline of the Separation using Graph Contraction

Switch lifted inequality.

Outline of the Separation using Graph Contraction

In the scope of this talk, we omit the extension.

Outline

(1) Max-Cut Problem

(2) Separation using Graph Contraction

(3) Target Cuts

4 Computational Results

Target Cuts vs. Standard Separation

Target cuts were introduced by Buchheim, Liers, and Oswald.
Given:

- Polytope $P:=\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{d}$,
- Point $x^{*} \notin P$.

Target Cuts vs. Standard Separation

Target cuts were introduced by Buchheim, Liers, and Oswald.
Given:

- Polytope $P:=\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{d}$,
- Point $x^{*} \notin P$.

Standard separation

Find a valid inequality $a^{T} x \leq \alpha$ that separates x^{*} from P.

Target Cuts vs. Standard Separation

Target cuts were introduced by Buchheim, Liers, and Oswald.
Given:

- Polytope $P:=\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{d}$,
- Point $x^{*} \notin P$.

Standard separation

Find a valid inequality $a^{T} x \leq \alpha$ that separates x^{*} from P.

Target cut separation

Find a facet inducing inequality $a^{T} x \leq \alpha$ that separates x^{*} from P.

Target Cuts in a Nutshell

Given:

- Polytope $P:=\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{d}$,
- Point $x^{*} \notin P$,

Target Cuts in a Nutshell

Given:

- Polytope $P:=\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{d}$,
- Point $x^{*} \notin P$,
- Point $q \in \operatorname{relint}(P)$.

Target Cuts in a Nutshell

Given:

- Polytope $P:=\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{d}$,
- Point $x^{*} \notin P$,
- Point $q \in \operatorname{relint}(P)$.

Goal

Find the inequality $a^{T} x \leq \alpha$ which induces the facet of P that is intersected by the line $\overline{q x^{*}}$.

Target Cuts in a Nutshell

Given:

- Polytope $P:=\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{d}$,
- Point $x^{*} \notin P$,
- Point $q \in \operatorname{relint}(P)$.

Goal

Find the inequality $a^{T} x \leq \alpha$ which induces the facet of P that is intersected by the line $\overline{q x^{*}}$.

Target Cut LP

$$
\begin{array}{ll}
\max & a^{T}\left(x^{*}-q\right) \\
\text { s.t. } & a^{T}\left(x_{i}-q\right) \leq 1, \text { for } i=1, \ldots, n \tag{TC}\\
& a \in \mathbb{R}^{d}
\end{array}
$$

Delayed Row Generation

Main problem

(TC) has one row for each vertex of P.

Delayed Row Generation

Main problem

(TC) has one row for each vertex of P.
Idea
Start with a subset of vertices and extend it iteratively.

Delayed Row Generation

Main problem

(TC) has one row for each vertex of P.

Idea

Start with a subset of vertices and extend it iteratively.

Requires an oracle that
(1) checks whether a given inequality $b^{T} x \leq \beta$ is valid for P,

Delayed Row Generation

Main problem

(TC) has one row for each vertex of P.

Idea

Start with a subset of vertices and extend it iteratively.

Requires an oracle that
(1) checks whether a given inequality $b^{T} x \leq \beta$ is valid for P,
(2) if not, provides at least one violating vertex of P.

Delayed Row Generation: An Example

Oracle

Exact approach

- Solve $\max \left\{b^{T} x \mid x \in P\right\}$ for given b.
- Use of exact algorithm in each oracle call can slow down the overall target cut separation.

Oracle

Exact approach

- Solve $\max \left\{b^{T} x \mid x \in P\right\}$ for given b.
- Use of exact algorithm in each oracle call can slow down the overall target cut separation.

Heuristic approach

(1) Call a fast heuristic.
(2) If no violating vertex was found, call exact algorithm.

Oracle

Exact approach

- Solve $\max \left\{b^{T} x \mid x \in P\right\}$ for given b.
- Use of exact algorithm in each oracle call can slow down the overall target cut separation.

Heuristic approach

(1) Call a fast heuristic.
(2) If no violating vertex was found, call exact algorithm.

Oracle varieties

Try to find multiple violating vertices per oracle call.

Heuristic approach

Heuristic approach

Heuristic approach

Exact approach

Heuristic approach

Exact approach

Heuristic approach

Heuristic approach

Exact approach

Heuristic approach Exact approach

Heuristic approach

Heuristic approach

Exact approach

Heuristic approach

Exact approach

Heuristic approach

Heuristic approach

Exact approach

Heuristic approach

Exact approach

Heuristic approach

More but faster calls of the heuristic

Exact approach

Fewer but slower calls of the exact algorithm

Outline

(1) Max-Cut Problem

(2) Separation using Graph Contraction

(3) Target Cuts

4 Computational Results

Implementation

Graph contraction / selection

- Use graph contraction to reduce the size of the initial graph.
- If contracted graph is too large, select a connected subgraph:
- at random,
- prefer edges with an LP value close to 0.5 ,
- ...

Implementation

Graph contraction / selection

- Use graph contraction to reduce the size of the initial graph.
- If contracted graph is too large, select a connected subgraph:
- at random,
- prefer edges with an LP value close to 0.5 ,
- ...

Oracles for delayed row generation

- Exact algorithms:
- Branch \& Cut,
- Branch\&Bound using SDP relaxations.
- Heuristics:
- Kernighan-Lin (multiple solution version),
- Goemans-Williamson.

Computational Experiments

Test set

- Carried out a single B\&C optimization of the problem bqp250-1 with 250 nodes and 3339 edges [cf. Biq Mac Library].
- Extracted 42 intermediate LP solutions that were passed to the target cut separator.

Computational Experiments

Test set

- Carried out a single B\&C optimization of the problem bqp250-1 with 250 nodes and 3339 edges [cf. Biq Mac Library].
- Extracted 42 intermediate LP solutions that were passed to the target cut separator.

Measured quantities

- Average CPU time of the target cut separation over the 42 LP solutions.
- Rate of success, i.e., the percentage of the target cut separation attempts that found at least one cutting plane.

Reduction of LP Solution Size by Graph Contraction

Average CPU Time with Delayed Row Generation

[Intel Xeon 2.8 GHz , 8GB shared RAM.]

Rate of Success with Delayed Row Generation

Average CPU Time without Delayed Row Generation

[Intel Xeon 2.8 GHz , 8GB shared RAM.]

Rate of Success without Delayed Row Generation

Conclusion

- Size of the subgraphs has to be small for fast separation.
- ≤ 20 nodes with delayed row generation,
- ≤ 14 nodes without delayed row generation.

Conclusion

- Size of the subgraphs has to be small for fast separation.
- ≤ 20 nodes with delayed row generation,
- ≤ 14 nodes without delayed row generation.
- Subgraph selection is a crucial factor.
- Random subgraph selection: fast but unreliable.
- Fractional subgraph selection: slow but more effective.
- Size of the subgraphs has to be small for fast separation.
- ≤ 20 nodes with delayed row generation,
- ≤ 14 nodes without delayed row generation.
- Subgraph selection is a crucial factor.
- Random subgraph selection: fast but unreliable.
- Fractional subgraph selection: slow but more effective.
- Small subgraph size can cause small impact of the generated cutting planes.
- Size of the subgraphs has to be small for fast separation.
- ≤ 20 nodes with delayed row generation,
- ≤ 14 nodes without delayed row generation.
- Subgraph selection is a crucial factor.
- Random subgraph selection: fast but unreliable.
- Fractional subgraph selection: slow but more effective.
- Small subgraph size can cause small impact of the generated cutting planes.
- Open question: How to detect the most suitable subgraphs?
- Size of the subgraphs has to be small for fast separation.
- ≤ 20 nodes with delayed row generation,
- ≤ 14 nodes without delayed row generation.
- Subgraph selection is a crucial factor.
- Random subgraph selection: fast but unreliable.
- Fractional subgraph selection: slow but more effective.
- Small subgraph size can cause small impact of the generated cutting planes.
- Open question: How to detect the most suitable subgraphs?

Thank you for your attention!

