Tilting Komplexe

Thorsten Bonato

Universität Heidelberg

Heidelberg, 8. Oktober 2007

Kontext

2 Begriffe und Grundlagen

- Polytopale Komplexe und Unterteilungen
- Tilting Funktionen
- Polar und konjugierte Seitenfläche

3 Tilting Komplexe

- Konstruktion
- Eigenschaften
- Ergebnisse

Kontext

2 Begriffe und Grundlagen

- Polytopale Komplexe und Unterteilungen
- Tilting Funktionen
- Polar und konjugierte Seitenfläche

3 Tilting Komplexe

- Konstruktion
- Eigenschaften
- Ergebnisse

Wir betrachten das Symmetrische Traveling Salesman Problem auf nStädten, die alle paarweise miteinander verbunden sind. Wir arbeiten also auf dem vollständigen Graphen $K_n = (V_n, E_n)$.

Definition

- Das Symmetric Traveling Salesman Polytope STSP(n) ist definiert als die konvexe Hülle aller charakteristischen Vektoren von Rundreisen, die jede Stadt genau einmal besuchen.
- Das Graphical Traveling Salesman Polyhedron GTSP(n) ist analog definiert, jedoch dürfen hierbei die Städte auch mehrfach besucht werden.

Naddef und Rinaldi (1993)

- Facettendefinierende Ungleichungen des GTSP(n) zerfallen in drei Klassen:
 - (i) Triviale Ungleichungen: $\chi_e^T x \ge 0, \forall e \in E_n$,
 - (ii) Gradungleichungen: $\boldsymbol{\chi}_{\delta(u)}^T \boldsymbol{x} \geq 2, \, \forall \, u \in V_n \,,$
 - (iii) Ungleichungen in sog. Tight-Triangular- oder TT-Form.
- STSP(*n*) ist eine Seitenfläche des GTSP(*n*) bestimmt durch den Schnitt der Gradfacetten.
- Jede nicht-triviale Facette des STSP(n) induziert eine Facette des GTSP(n).
- Offene Frage: Ist der Schnitt einer GTSP(n)-Facette mit STSP(n) automatisch eine Facette von STSP(n)???

Was bedeutet TT-Form?

Eine Ungleichung $\boldsymbol{a}^T \boldsymbol{x} \geq \alpha$ ist in TT-Form, falls

- a auf allen Dreiecken der Δ -Ungleichung genügt,
- für jeden Knoten u mindestens eine Kante e ≇ u existiert, so daß auf dem dadurch definierten Dreieck die Δ-Ungleichung mit Gleichheit erfüllt ist.

Was bedeutet TT-Form?

Eine Ungleichung $a^T x \ge \alpha$ ist in TT-Form, falls

- a auf allen Dreiecken der Δ -Ungleichung genügt,
- für jeden Knoten u mindestens eine Kante e ≇ u existiert, so daß auf dem dadurch definierten Dreieck die Δ-Ungleichung mit Gleichheit erfüllt ist.

Oswald, Reinelt und Theis (2005)

- Klasse der TT-Facetten zerfällt in zwei Subklassen:
 - (i) NR-Facetten, die sich auf STSP(n) übertragen lassen,
 - (ii) nicht-NR-Facetten.
- Subklasse der nicht-NR-Facetten ist nicht leer für $n \ge 9$.
- Tilting Komplexe erlauben Aussagen über die lokale Struktur der TT-Facetten.

Kontext

2 Begriffe und Grundlagen

• Polytopale Komplexe und Unterteilungen

- Tilting Funktionen
- Polar und konjugierte Seitenfläche

3 Tilting Komplexe

- Konstruktion
- Eigenschaften
- Ergebnisse

Ein polytopaler Komplex $\mathcal{C} := \{P_i\}_{i \in I}$ ist eine endliche Menge von Polytopen mit folgenden Eigenschaften:

- Mit P_i sind auch alle Seitenflächen von P_i im Komplex.
- Der Schnitt zweier Polytope P_i, P_j des Komplexes muß eine Seitenfläche beider Polytope sein.

Ein polytopaler Komplex $\mathcal{C} := \{P_i\}_{i \in I}$ ist eine endliche Menge von Polytopen mit folgenden Eigenschaften:

- Mit P_i sind auch alle Seitenflächen von P_i im Komplex.
- Der Schnitt zweier Polytope P_i, P_j des Komplexes muß eine Seitenfläche beider Polytope sein.

Beispiel

$$\mathcal{C}(P) := \{ \emptyset, 0, 1, 2, 01, 02, 12, P \}$$
$$\mathcal{C}(\partial P) := \mathcal{C}(P) \setminus \{ P \} \text{ (Randkomplex)}$$

Eine Unterteilung eines Polytops $P \subseteq \mathbb{R}^d$ ist ein polytopaler Komplex \mathcal{C} mit $P = \bigcup_{Q \in \mathcal{C}} Q$.

Sie heißt regulär, falls C aus der kanonischen Projektion der unteren Seitenflächen eines Polytops $O \subseteq \mathbb{R}^{d+1}$ hervorgeht.

Eine Unterteilung eines Polytops $P \subseteq \mathbb{R}^d$ ist ein polytopaler Komplex \mathcal{C} mit $P = \bigcup_{Q \in \mathcal{C}} Q$.

Sie heißt regulär, falls C aus der kanonischen Projektion der unteren Seitenflächen eines Polytops $O \subseteq \mathbb{R}^{d+1}$ hervorgeht.

Beispiel

Die Begriffe nochmal im Überblick

- (a) Polytop P
- (b) Polytopaler Komplex aber keine Unterteilung von P
- (c) Reguläre Unterteilung von P
- (d) Nicht-reguläre Unterteilung von P

Kontext

2 Begriffe und Grundlagen

- Polytopale Komplexe und Unterteilungen
- Tilting Funktionen
- Polar und konjugierte Seitenfläche

3 Tilting Komplexe

- Konstruktion
- Eigenschaften
- Ergebnisse

Inputs

- eine sog. gute Seitenfläche F ⊊ STSP(n), die nicht in einer Nichtnegativitätsfacette enthalten ist.
- die definierenden Ungleichungen $a_j^T x \ge \alpha_j$, j = 0, ..., k, aller NR-Facetten, deren Schnitt mit STSP(n) F enthält.

Inputs

- eine sog. gute Seitenfläche F ⊊ STSP(n), die nicht in einer Nichtnegativitätsfacette enthalten ist.
- die definierenden Ungleichungen $a_j^T x \ge \alpha_j$, j = 0, ..., k, aller NR-Facetten, deren Schnitt mit STSP(n) F enthält.

Definition

Für $u \in V_n$ definiere $\lambda_u \colon \mathbb{R}^{k+1} \longrightarrow \mathbb{R}$ $\mu \longmapsto \min_{(v,w) \in E_n \setminus \delta(u)} \sum_{j=0}^k \mu_j \left(a_j^{uv} + a_j^{uw} - a_j^{vw} \right)$ Tilting Funktionen sind stückweise linear und konkav.

Tilting Funktionen sind stückweise linear und konkav.

Lemma

Jede stückweise lineare und konvexe Funktion f über einem Polytop P definiert eine reguläre Unterteilung von P durch die kanonische Projektion der unteren Seitenflächen des Polytops

$$Q := \operatorname{conv} \left\{ \left(\boldsymbol{x}^T, f(\boldsymbol{x}) \right) \mid \boldsymbol{x} \in P \right\} = \operatorname{conv} (G_{f_{|P}}).$$

Tilting Funktionen sind stückweise linear und konkav.

Lemma

Jede stückweise lineare und konvexe Funktion f über einem Polytop P definiert eine reguläre Unterteilung von P durch die kanonische Projektion der unteren Seitenflächen des Polytops

$$Q := \operatorname{conv}\left\{\left(\boldsymbol{x}^{T}, f(\boldsymbol{x})\right) \mid \boldsymbol{x} \in P\right\} = \operatorname{conv}\left(G_{f_{|P}}\right).$$

Beispiel

Folgerung

- $-\lambda_{u \mid \mathbb{A}^k}$ definiert eine reguläre Unterteilung des k-dimensionalen Standardsimplex $\mathbb{A}^k := \operatorname{conv} \{ e_0, \dots, e_k \}.$
- diese Unterteilung wird mit \mathcal{C}_u bezeichnet.

Folgerung

- $-\lambda_{u \mid \mathbb{A}^k}$ definiert eine reguläre Unterteilung des k-dimensionalen Standardsimplex $\mathbb{A}^k := \operatorname{conv} \{ e_0, \dots, e_k \}.$
- diese Unterteilung wird mit \mathcal{C}_u bezeichnet.

Beispiel

Kontext

2 Begriffe und Grundlagen

- Polytopale Komplexe und Unterteilungen
- Tilting Funktionen
- Polar und konjugierte Seitenfläche

3 Tilting Komplexe

- Konstruktion
- Eigenschaften
- Ergebnisse

Zu einem Polytop $P\subseteq \mathbb{R}^d$ ist das Polar P^Δ definiert durch

$$P^{\Delta} := \{ \boldsymbol{a} \in \mathbb{R}^d \mid \boldsymbol{a}^T \boldsymbol{x} \le 1, \, \forall \, \boldsymbol{x} \in P \, \}.$$

Zu einem Polytop $P\subseteq \mathbb{R}^d$ ist das Polar P^Δ definiert durch

$$P^{\Delta} := \{ \boldsymbol{a} \in \mathbb{R}^d \mid \boldsymbol{a}^T \boldsymbol{x} \le 1, \, \forall \, \boldsymbol{x} \in P \, \}.$$

Eigenschaften

Zu einem Polytop $P\subseteq \mathbb{R}^d$ ist das Polar P^Δ definiert durch

$$P^{\Delta} := \{ \boldsymbol{a} \in \mathbb{R}^d \mid \boldsymbol{a}^T \boldsymbol{x} \le 1, \, \forall \, \boldsymbol{x} \in P \, \}.$$

Eigenschaften

- Das Polar besteht anschaulich aus den Vektoren der Lhs-Koeffizienten aller normierten für *P* zulässigen Ungleichungen.
- Ist P ein volldimensionales Polytop mit $\mathbf{0} \in \operatorname{relint}(P)$, so übertragen sich diese Eigenschaften auf P^{Δ} und es gilt

$$P^{\Delta} = \{ \boldsymbol{a} \mid \boldsymbol{a}^{T} \boldsymbol{v} \leq 1, \, \forall \, \boldsymbol{v} \in \operatorname{vert}(P) \, \}.$$

D.h. man kann P^Δ nur anhand der Ecken von P beschreiben.

Beispiel wechselseitig polarer Polytope

Beachte

Es gilt stets, daß $\mathbf{0} \in P^{\Delta}$ und $\mathbf{0} \in P^{\Delta\Delta}$. Somit kann $P = P^{\Delta\Delta}$ nur gelten, falls $\mathbf{0} \in P$.

Sei $P \subseteq \mathbb{R}^d$ ein volldimensionales Polytop mit $\mathbf{0} \in \operatorname{relint}(P)$. Für alle Seitenflächen F von P ist die konjugierte Seitenfläche F^{\diamond} definiert durch

$$F^{\diamond} := \{ \boldsymbol{a} \in \mathbb{R}^d \mid \boldsymbol{a}^T \boldsymbol{x} \leq 1, \, \forall \, \boldsymbol{x} \in P \, \text{ und} \ \boldsymbol{a}^T \boldsymbol{x} = 1, \, \forall \, \boldsymbol{x} \in F \, \}.$$

Sei $P \subseteq \mathbb{R}^d$ ein volldimensionales Polytop mit $\mathbf{0} \in \operatorname{relint}(P)$. Für alle Seitenflächen F von P ist die konjugierte Seitenfläche F^\diamond definiert durch

$$F^{\diamond} := \{ \boldsymbol{a} \in \mathbb{R}^d \mid \boldsymbol{a}^T \boldsymbol{x} \leq 1, \, \forall \, \boldsymbol{x} \in P \, \text{ und} \ \boldsymbol{a}^T \boldsymbol{x} = 1, \, \forall \, \boldsymbol{x} \in F \, \}.$$

Eigenschaften

- F^{\diamond} ist eine Seitenfläche von P^{Δ} .
- $\dim(F^{\diamond}) = \operatorname{codim}(F) 1 = \dim(P) \dim(F) 1.$

Konjugierte Seitenfläche

Wir betrachten nun die konjugierten Seitenflächen für die Ecken v_i bzw. die Kanten $F_i := \{v_i, v_{(i+1) \mod 5}\}$ von P.

Beispiel konjugierter Seitenflächen

Konjugierte Seitenfläche

Wir betrachten nun die konjugierten Seitenflächen für die Ecken v_i bzw. die Kanten $F_i := \{v_i, v_{(i+1) \mod 5}\}$ von P.

Beispiel konjugierter Seitenflächen

Beobachtung

Die Seitenverbände von P und P^{Δ} – also die teilweise geordneten Mengen der jeweiligen Seitenflächen mit der Inklusion als partieller Ordnung – verhalten sich anti-isomorph zueinander. Worin besteht nun der Zusammenhang ...

Worin besteht nun der Zusammenhang ...

... zu Tilting Komplexen?

Ein Tilting Komplex \mathfrak{T}_u am Knoten u ist eine Unterteilung der zu einer guten Seitenfläche F konjugierten Seitenfläche F^\diamond . Der zugehörige Tilting Komplex \mathfrak{T} ist definiert durch

$$\mathfrak{T} := \bigcap_{u \in V_n} \mathfrak{T}_u.$$

Worin besteht nun der Zusammenhang ...

... zu Tilting Komplexen?

Ein Tilting Komplex \mathfrak{T}_u am Knoten u ist eine Unterteilung der zu einer guten Seitenfläche F konjugierten Seitenfläche F^\diamond . Der zugehörige Tilting Komplex \mathfrak{T} ist definiert durch

$$\mathfrak{T} := \bigcap_{u \in V_n} \mathfrak{T}_u$$

... zur Unterteilung \mathbb{C}_u ?

Eine reguläre Unterteilung C_u des Standardsimplex läßt sich durch geeignete Projektion in T_u überführen.

Problem

Die Definition der konjugierten Seitenfläche setzt ein volldimensionales Polytop P mit $0 \in \operatorname{relint}(P)$ voraus. Wir möchten jedoch Seitenflächen von STSP(n) betrachten, welches keine dieser Voraussetzungen erfüllt.

Problem

Die Definition der konjugierten Seitenfläche setzt ein volldimensionales Polytop P mit $0 \in \operatorname{relint}(P)$ voraus. Wir möchten jedoch Seitenflächen von STSP(n) betrachten, welches keine dieser Voraussetzungen erfüllt.

Lösung

Wir translatieren STSP(n) derart, daß ein beliebiger relativ innerer Punkt, z.B. $x^* := \frac{2}{n-1} \cdot \mathbb{1}$, auf den Ursprung abgebildet wird. Anschließend projizieren wir das verschobene Polytop auf dessen affine Hülle. Dabei werden die zulässigen Ungleichungen ebenfalls transformiert und zwar in die sog. Standardskalierung (bzgl. x^*).

Gibt es Fragen zu den Grundlagen?

1 Kontext

2 Begriffe und Grundlagen

- Polytopale Komplexe und Unterteilungen
- Tilting Funktionen
- Polar und konjugierte Seitenfläche

3 Tilting Komplexe

- Konstruktion
- Eigenschaften
- Ergebnisse

Wir betrachten die nicht-NR-Facette von GTSP(10), die durch folgende Ungleichung definiert ist

Ihr Schnitt mit STSP(10) liefert eine gute Seitenfläche F mit codim(F) = 3. Diese ist in drei NR-Facetten enthalten

$$\boldsymbol{a}_j^T \boldsymbol{x} \ge \alpha_j, \, j = 0, 1, 2.$$

Es gilt also k = 2.

Beachte

Die Übereinstimmung von codim(F) mit der Anzahl der NR-Facetten, die F enthalten, ist reiner Zufall!

• Für alle $u \in V_{10} \setminus \{3,4\}$ gilt $\lambda_{u \mid \mathbb{A}^2} \equiv 0$. Diese können ignoriert werden.

Ein Beispiel

- Für alle $u \in V_{10} \setminus \{3, 4\}$ gilt $\lambda_{u \mid \mathbb{A}^2} \equiv 0$. Diese können ignoriert werden.
- Interessant sind also die Tilting Funktionen λ_{u |Δ²}, für u = 3, 4. Durch conv (G_{λu |Δ²}) ergeben sich die Polytope P₃, P₄. Diese definieren die regulären Unterteilungen C₃, C₄.

Ein Beispiel

• Mittels geeigneter Projektion werden die Unterteilungen $\mathcal{C}_3, \mathcal{C}_4$ auf die Tilting Komplexe $\mathcal{T}_3, \mathcal{T}_4$ an den entsprechenden Knoten abgebildet.

Ein Beispiel

• Mittels geeigneter Projektion werden die Unterteilungen C_3 , C_4 auf die Tilting Komplexe T_3 , T_4 an den entsprechenden Knoten abgebildet.

• Der Schnitt der Komplexe $\mathbb{T}_3,\mathbb{T}_4$ ergibt schließlich den Tilting Komplex $\mathbb{T}.$

1 Kontext

2 Begriffe und Grundlagen

- Polytopale Komplexe und Unterteilungen
- Tilting Funktionen
- Polar und konjugierte Seitenfläche

3 Tilting Komplexe

- Konstruktion
- Eigenschaften
- Ergebnisse

- Die Ecken v₀,..., v₅ des Tilting Komplexes korrespondieren zu den TT-Facetten von GTSP(10), deren Schnitt mit STSP(10) die gute Seitenfläche F enthält.
- Die Adjazenzbeziehungen der Ecken übertragen sich direkt auf die zugehörigen TT-Facetten.

Die Ecken der konjugierten Seitenfläche F^\diamond korrespondieren zu den drei NR-Facetten

$$\boldsymbol{a}_j^T \boldsymbol{x} \ge \alpha_j \,, \, j = 0, 1, 2,$$

die als Input für die Berechnung von \mathcal{T} dienten. Folglich lassen sich diese mittels der bereits vorgestellten äußeren Beschreibung von F^{\diamond} aus den Ecken von STSP(n) berechnen.

- Die übrigen Ecken des Tilting Komplexes repräsentieren die nicht-NR-Facetten.
- In Standardskalierung erhält man diese als Konvexkombination der NR-Facetten. Die Koeffizienten sind dabei identisch zu den baryzentrischen Koordinaten der entsprechenden Ecke von \mathfrak{T} bezüglich der Ecken von F^{\diamond} .

Ecken des Komplexes, die im relativen Inneren liegen, liefern nicht-NR-Facetten, deren Schnitt mit STSP(10) gleich F ist, d.h. also

 $F = G_5 \cap \mathsf{STSP}(10).$

Der Teilkomplex der Ecken v_1, v_2, v_3 entspricht dem eindimensionalen Tilting Komplex einer guten Seitenfläche \hat{F} mit $\operatorname{codim}(\hat{F}) = 2$, die F enthält.

Der Teilkomplex der Ecken v_0, v_2, v_4 entspricht ebenfalls diesem Tilting Komplex von \hat{F} , allerdings modulo Knotenpermutation. Die zugehörige Permutation lautet

$$\pi := \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 2 & 1 & 4 & 3 & 9 & 0 & 8 & 7 & 5 \end{pmatrix}$$

1 Kontext

2 Begriffe und Grundlagen

- Polytopale Komplexe und Unterteilungen
- Tilting Funktionen
- Polar und konjugierte Seitenfläche

3 Tilting Komplexe

- Konstruktion
- Eigenschaften
- Ergebnisse

Ergebnisse für GTSP(10)

• Bisher wurden nur ein- und zweidimensionale Tilting Komplexe gefunden im Verhältnis 221:6.

Ergebnisse für GTSP(10)

- Bisher wurden nur ein- und zweidimensionale Tilting Komplexe gefunden im Verhältnis 221:6.
- Die eindimensionalen Komplexe besitzen genau eine relativ innere Ecke.

Ergebnisse für GTSP(10)

- Bisher wurden nur ein- und zweidimensionale Tilting Komplexe gefunden im Verhältnis 221:6.
- Die eindimensionalen Komplexe besitzen genau eine relativ innere Ecke.
- Bei den zweidimensionalen Komplexen gibt es zwei verschiedene Grundformen:

Sie weisen einen hohen Grad an Symmetrie auf.

• Auch hier wurden bisher nur ein- und zweidimensionale Tilting Komplexe gefunden in einem Verhältnis von 1653:2.

- Auch hier wurden bisher nur ein- und zweidimensionale Tilting Komplexe gefunden in einem Verhältnis von 1653:2.
- Die zwei zweidimensionalen Komplexe sehen wie folgt aus:

Sie verfügen nicht über die Symmetrie der zweidimensionalen Komplexe von GTSP(10).

Ich bedanke mich für ihr Interesse und ihre Aufmerksamkeit!

Gibt es abschließende Fragen?