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Max-Cut Problem

Definition

Let G = (V ,E , c) be an undirected weighted
graph.

Any S ⊆ V induces a set δ(S) of edges with
exactly one end in S . The set δ(S) is called a
cut of G with shores S and V \S .

Finding a cut with maximum aggregate edge
weight is known as max-cut problem.
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Related Polytopes

Cut polytope CUT(G)

Convex hull of all incidence vectors of
cuts of G .

Semimetric polytope MET(G)

Relaxation of the max-cut IP formulation
described by two inequality classes:

CUT(K3)

Odd-cycle: x(F )− x(C \F ) ≤ |F | − 1, for each cycle C of G ,
for all F ⊆ C , |F | odd.

Trivial: 0 ≤ xe ≤ 1, for all e ∈ E .
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Outline of the Separation using Graph Contraction

Input: LP solution z ∈ MET(G )\CUT(G ).
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Outline of the Separation using Graph Contraction

Transform 1-edges into 0-edges.
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Outline of the Separation using Graph Contraction

Contract 0-edges. Allows heuristic odd-cycle separation.
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Outline of the Separation using Graph Contraction

Introduce artificial LP values for non-edges.
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Outline of the Separation using Graph Contraction

Separate extended LP solution.
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Outline of the Separation using Graph Contraction

Project out nonzero coefficients related to non-edges.
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Outline of the Separation using Graph Contraction

Lift inequality.
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Outline of the Separation using Graph Contraction

Switch lifted inequality.
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Outline of the Separation using Graph Contraction

In the scope of this talk, we omit the extension.
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Target Cuts vs. Standard Separation

Target cuts were introduced by Buchheim, Liers, and Oswald.

Given:

Polytope P := conv{x1, . . . , xn} ⊆ Rd ,

Point x∗ /∈ P.

Standard separation

Find a valid inequality aT x ≤ α
that separates x∗ from P.

P

x∗

Target cut separation

Find a facet inducing inequality
aT x ≤ α that separates x∗ from P.

P

x∗
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Target Cuts in a Nutshell

Given:

Polytope P := conv{x1, . . . , xn} ⊆ Rd ,

Point x∗ /∈ P,

Point q ∈ relint(P).

P

x∗

q

Goal

Find the inequality aT x ≤ α which induces the facet of P that is
intersected by the line qx∗.

Target Cut LP

max aT (x∗ − q)

s.t. aT (xi − q) ≤ 1, for i = 1, . . . , n

a ∈ Rd .

(TC)
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Delayed Row Generation

Main problem

(TC) has one row for each vertex of P.

Idea

Start with a subset of vertices and extend it
iteratively.

Requires an oracle that

1 checks whether a given inequality
bT x ≤ β is valid for P,

2 if not, provides at least one violating
vertex of P.

P
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Delayed Row Generation: An Example

x∗

PP
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Delayed Row Generation: An Example
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Delayed Row Generation: An Example
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Oracle

Exact approach

Solve max {bT x | x ∈ P} for given b.

Use of exact algorithm in each oracle call can slow down the
overall target cut separation.

Heuristic approach
1 Call a fast heuristic.

2 If no violating vertex was found, call exact algorithm.

Oracle varieties

Try to find multiple violating vertices per oracle call.
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Oracle: Heuristic vs. Exact Approach

Heuristic approach

x∗

PP

Exact approach

x∗

PP

More but faster calls of the
heuristic

vs.
Fewer but slower calls of

the exact algorithm
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Oracle: Heuristic vs. Exact Approach
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Implementation

Graph contraction/selection

Use graph contraction to reduce the size of the initial graph.

If contracted graph is too large, select a connected subgraph:

at random,
prefer edges with an LP value close to 0.5,
...

Oracles for delayed row generation

Exact algorithms:

Branch&Cut,
Branch&Bound using SDP relaxations.

Heuristics:

Kernighan-Lin (multiple solution version),
Goemans-Williamson.
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Computational Experiments

Test set

Carried out a single B&C optimization of the problem bqp250-1

with 250 nodes and 3339 edges [cf. Biq Mac Library].

Extracted 42 intermediate LP solutions that were passed to the
target cut separator.

Measured quantities

Average CPU time of the target cut separation over the 42 LP
solutions.

Rate of success, i. e., the percentage of the target cut separation
attempts that found at least one cutting plane.
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Reduction of LP Solution Size by Graph Contraction
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Average CPU Time with Delayed Row Generation
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Rate of Success with Delayed Row Generation
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Average CPU Time without Delayed Row Generation
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Rate of Success without Delayed Row Generation
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Conclusion

Size of the subgraphs has to be small for fast separation.

≤ 20 nodes with delayed row generation,
≤ 14 nodes without delayed row generation.

Subgraph selection is a crucial factor.

Random subgraph selection: fast but unreliable.
Fractional subgraph selection: slow but more effective.

Small subgraph size can cause small impact of the generated
cutting planes.

Open question: How to detect the most suitable subgraphs?

Thank you for your attention!
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