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Max-Cut Problem

Definition

Let G = (V ,E ) be an undirected weighted
graph.

Any S ⊆ V induces a set δ(S) of edges with
exactly one end node in S . The set δ(S) is
called a cut of G with shores S and V \S .

Finding a cut with maximum aggregate edge
weight is known as max-cut problem.
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Max-Cut Problem

Complexity

NP-hard for:

general graphs with arbitrary edge weights,
almost planar graphs.

Polynomial for e. g.:

graphs with exclusively negative edge weights,
planar graphs,
graphs not contractible to K5.

Applications

Unconstrained quadratic +/–1- resp. 0/1-optimization.

Computation of ground states of Ising spin glasses.

Via minimization in VLSI circuit design.
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Related Polytopes

Cut polytope CUT(G)

Convex hull of all incidence vectors of
cuts of G .

Semimetric polytope MET(G)

Relaxation of the max-cut IP formulation
described by two inequality classes:

CUT(K3)

Odd-cycle: x(F )− x(C \F ) ≤ |F | − 1, for each cycle C of G ,
for all F ⊆ C , |F | odd.

Trivial: 0 ≤ xe ≤ 1, for all e ∈ E .

CUT(G ) and MET(G ) have exactly the same integral points.

T. Bonato et al. Lifting and Separation Procedures for the Cut Polytope 6 / 33



Related Polytopes

Cut polytope CUT(G)

Convex hull of all incidence vectors of
cuts of G .

Semimetric polytope MET(G)

Relaxation of the max-cut IP formulation
described by two inequality classes: CUT(K3)

Odd-cycle: x(F )− x(C \F ) ≤ |F | − 1, for each cycle C of G ,
for all F ⊆ C , |F | odd.

Trivial: 0 ≤ xe ≤ 1, for all e ∈ E .

CUT(G ) and MET(G ) have exactly the same integral points.

T. Bonato et al. Lifting and Separation Procedures for the Cut Polytope 6 / 33



Related Polytopes

Cut polytope CUT(G)

Convex hull of all incidence vectors of
cuts of G .

Semimetric polytope MET(G)

Relaxation of the max-cut IP formulation
described by two inequality classes: CUT(K3)

Odd-cycle: x(F )− x(C \F ) ≤ |F | − 1, for each cycle C of G ,
for all F ⊆ C , |F | odd.

Trivial: 0 ≤ xe ≤ 1, for all e ∈ E .

CUT(G ) and MET(G ) have exactly the same integral points.

T. Bonato et al. Lifting and Separation Procedures for the Cut Polytope 6 / 33



Exact Solution Methods

Algorithms

Branch&Cut,

Branch&Bound using SDP relaxations.

Certain separation procedures only work
for dense/complete graphs.

How to handle sparse graphs

Trivial approach:
artificial completion using edges with weight 0.

Drawback:
increases number of variables and thus the computational difficulty.
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An Example

Quadratic (4× 4)-grid with 16 nodes and 24
edges.

W.r.t. LP solution z ∈ MET(G ) \ CUT(G ),
the edge set decomposes into:

0-edges,

1-edges,

fractional edges.

Artificial completion would require 96 additional edges!
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Outline of the Contraction-based Separation

Input: LP solution z ∈ MET(G )\CUT(G ).

z
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Outline of the Contraction-based Separation

Transform 1-edges into 0-edges.
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Switching

z ∈ MET(G ) implies existence of a cut δ(S)
that contains

all 1-edges but no 0-edges.

Switching z alongside the cut δ(S):

only affects edges of δ(S),

transforms all 1-edges into 0-edges,

may alter values of fractional edges.

Values in the switched LP solution z̃ are either fractional or zero.
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Outline of the Contraction-based Separation

Contract 0-edges.
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Contraction

Let G0 be the graph induced by the 0-edges
of the switched LP solution z̃ .

1 Determine connected components of G0.

2 Contract each component to a supernode.

Contracted LP solution z has only fractional values.

Associated contracted graph G may not be complete.
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Contraction as Heuristic Odd-Cycle Separator

Assume two components of G0 are joined by
two fractional edges f , g with different
switched LP values. W.l.o.g. let z̃f > z̃g .

Then the switched LP solution z̃ violates the
odd-cycle inequality

xf − x(C \f ) ≤ 0.

W1 W2

W3 W4

Contraction allows heuristic odd-cycle separation.
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Outline of the Contraction-based Separation

Introduce artificial LP values for non-edges.
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Extension

Given a contracted LP solution z ∈ MET(G ),
assign artificial LP values to the non-edges.

Goal: extended LP solution z ′ ∈ MET(G
′
).

New cycles in the extended graph

consist of
a former non-edge and a connecting path.

w1 w2

w3 w4

Feasible artificial LP values of non-edge ht

Range: [ max{0, Lht}, min{Uht , 1} ] ⊆ [0, 1] with

Lht := max { z(F ) − z(P \ F ) − |F |+ 1 | P (h, t)-path, F ⊆ P, |F | odd },
Uht := min {−z(F ) + z(P \ F ) + |F | | P (h, t)-path, F ⊆ P, |F | even }.

Odd-cycle / trivial inequality derived from arg max (resp. arg min) is
called a lower (resp. upper) inequality of ht.
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Outline of the Contraction-based Separation

Separate extended LP solution.
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Target Cuts vs. Standard Separation

Target cuts were introduced by Buchheim, Liers, and Oswald (2008).

Given:

Polytope P := conv{x1, . . . , xn} ⊆ Rd ,

Point x∗ /∈ P.

Standard separation

Find a valid inequality aT x ≤ α
that separates x∗ from P.

P

x∗

Target cut separation

Find a facet defining inequality
aT x ≤ α that separates x∗ from P.

P

x∗
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Target Cuts in a Nutshell

Given:

Polytope P := conv{x1, . . . , xn} ⊆ Rd ,

Point x∗ /∈ P,

Point q ∈ relint(P).

P

x∗

q

Goal

Find the inequality aT x ≤ α which defines the facet of P that is
intersected by the line qx∗.

Target Cut LP

max aT (x∗ − q)

s.t. aT (xi − q) ≤ 1, for i = 1, . . . , n

a ∈ Rd .
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Outline of the Contraction-based Separation

Project out nonzero coefficients related to non-edges.
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Projection

Consider a valid inequality a′T x ′ ≤ α′
violated by the extended LP solution z ′.

Non-edges may have nonzero coefficients!

Project out coefficient of non-edge uv

Add a lower inequality if a′uv > 0 resp. an
upper inequality if a′uv < 0.

(· · · a
′

uv
· · · a

′

st
· · · , α

′)

In the projected inequality, all non-edge coefficients are 0 and can be
truncated.

Drawback

If the added inequalities are not tight at z ′ then the projection
reduces the initial violation.
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Outline of the Contraction-based Separation

Lift inequality.
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Lifting

Required information

When contracting edge e = ht, store
partition (H,T ,B) of the adjacent nodes:

H = { exclusive neighbors of h },
T = { exclusive neighbors of t },
B = { common neighbors of h and t }.

h t
e

H TBH TB

Lift inequality

Assign coefficients of edges of the shrunk graph

to edges of the
original graph w.r.t. (H,T ,B).

Edge e gets coefficient −min
{∑

v∈T |cwv |,
∑

v∈H |cwv |
}

.
W.l.o.g. we assume that the edges (w : T ) yield the arg min.
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Lifting: Facet Preservation

Theorem

An inequality (ĉ , γ) obtained from a facet (c , γ) of CUT(G ) by
splitting node w w.r.t. (H,T ,B) defines a facet of CUT(Ĝ ) if there
exists a node set S ⊆ V with w ∈ S that satisfies:

(i) (c , γ) is tight at χδ(S).

(ii) c is nonnegative on (w : T ∩ S) and nonpositive on (w : T \ S).

(iii) c(v : S) = c(v : V \ S), for all v ∈ B.

Proof sketch

Show: face (ĉ, γ) ⊆ facet (b̂, β) ⇒ IEQs identical up to pos. scaling.

∃λ > 0 with b̂e = λĉe , for e /∈ ({h, t} : B) ·∪ ht and
b̂hv + b̂tv = λĉhv , for v ∈ B. (due to tight cut correspondence)

S ′ := S \ w ·∪ h and S ′′ := S ′ ·∪ t induce tight cuts of (ĉ, γ).

Consider δ(S ′), let v ∈ B swap shores ; b̂tv = λĉtv = 0.

Compare δ(S ′) and δ(S ′′) ; b̂ht = λĉht .
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exists a node set S ⊆ V with w ∈ S that satisfies:

(i) (c , γ) is tight at χδ(S).

(ii) c is nonnegative on (w : T ∩ S) and nonpositive on (w : T \ S).

(iii) c(v : S) = c(v : V \ S), for all v ∈ B.

Proof sketch
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b̂hv + b̂tv = λĉhv , for v ∈ B. (due to tight cut correspondence)

S ′ := S \ w ·∪ h and S ′′ := S ′ ·∪ t induce tight cuts of (ĉ, γ).
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Outline of the Contraction-based Separation

Switch back lifted inequality.
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Undo Switching: Facet Preservation

Theorem (Barahona and Mahjoub (1986))

An inequality ∑
e /∈δ(S) cexe +

∑
e∈δ(S) ce(1− xe) ≤ γ

obtained from a facet (c, γ) of CUT(G ) by switching alongside a
cut δ(S) defines a facet of CUT(G ).

Proof sketch

For cuts induced by a single node v :{
χδ(Ui )

}
i=1,...,|E | are affinely independent and satisfy the original

inequality with equality. W.l.o.g. v ∈ Ui , for all i .

Thus,
{
χδ(Ui\v)

}
i=1,...,|E | are affinely independent and satisfy the

switched inequality with equality.

For arbitrary cuts, iterate over all nodes in one of the cut’s shores.
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Outline
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Computational Experiments

Used max-cut solver based on B&C framework ABACUS.

Problem classes

Quadratic 0/1-optimization resp. max-cut problems taken from
Biq Mac Library.

Spin glass problems on toroidal grid graphs with uniformly
distributed ±1 resp. Gaussian distributed integral weights.

Separation schemes

Standard (CYC):
Odd-cycles (spanning-tree heuristic, 3-/4-cycles, exact separation).

Contraction (CON):
“Standard”+ contraction-based OC-separation prior to exact
OC-separation.

Extension (CLQ, TC):
“Contraction”+ additional separation on extended LP solution.
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Comparison of CPU Times

#Wins #Add. rejects Avg. CPU time red. [%]

Class #Files #Limit CYC CON CLQ TC CON CLQ TC CON CLQ TC

bqp50 10 0 0 6 8 8 0 0 0 92 97 97
bqp100 10 0 0 6 6 4 0 0 0 97 97 96
bqp250 10 5 0 5 0 0 2(0) 3(3) 2(0) 59 9 41
be120.3 10 0 0 9 1 0 1(0) 1(1) 1(1) 57 −85 16
be250 10 6 0 4 0 0 0 1(1) 0 54 −23 47
gka.a 8 0 0 4 5 3 0 0 0 93 94 91
gka.b 10 0 0 10 0 0 0 0 4(4) 58 19 −40215
gka.c 7 0 0 2 3 5 0 0 0 95 95 96
gka.d 10 4 0 6 1 1 1(0) 1(1) 1(1) 67 −1 41

tpm.2d 120 8 0 112 —b —b 18(0) —b —b 96 —b —b

tg.2d 320 0 0 320 —b —b 1(0) —b —b 90 —b —b

tpm.3d 40 5 5 25 4 7 1(0) 5(5) 1(1) 23 −159 −56
tg.3d 70 7 2 39 17 20 4(2) 5(5) 3(0) 44 −40 26
g05 60c 10 0 0 —a 10 0 —a 0 3(3) —a ≥ 87 ≥ 62
pm1s 20 0 14 6 0 0 0 0 0 −16 −309 −62
w01 10 0 8 1 0 1 0 0 0 −37 −458 −73
pw01 10 0 8 2 0 0 0 0 0 −24 −685 −102
man 4 0 0 3 1 0 2(0) 2(0) 2(0) 71 70 61
pman 57 0 7 23 27 22 9(7) 9(0) 10(3) 67 68 64

a CON ran out of memory for every instance.
b Equivalent to CON.
c CYC exceeded the 10 hour time limit on all instances. We used the limit as lower bound on the CPU time of CYC.

[ Intel Xeon 2.8 GHz, 8GB shared RAM. Running time capped to 10h per instance. ]
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Spin Glass Problems with Gaussian Distributed Integral Weights
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Statistics on Contracted Graph Sizes

Data origin

Performed optimization runs on ten toroidal (100× 100)-grids
with Gaussian distributed edge weights.

Recorded the final sizes of those graphs that could be contracted
without encountering violated odd-cycles.

Figures show the superimposed data of the optimization runs.
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Conclusion

Contraction-based Separation

Enables the use of separation techniques for dense/complete
graphs on sparse graphs.

Use of target cut separation can produce facet defining inequalities
not available through techniques that follow the classical template
paradigm.

In our experiments, using the contraction as heuristic odd-cycle
separator lead to an average CPU time reduction of almost 55%
with peak values of up to 97% for selected problem classes.
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