Lifting and Separation Procedures for the Cut Polytope

T. Bonato, M. Jünger, G. Reinelt, G. Rinaldi

Saarbrücken, February 21, 2014

2 Contraction-based Separation

1 Max-Cut Problem

2 Contraction-based Separation

3 Computational Results

Definition

Let G = (V, E) be an undirected weighted graph.

Definition

Let G = (V, E) be an undirected weighted graph.

Any $S \subseteq V$ induces a set $\delta(S)$ of edges with exactly one end node in S. The set $\delta(S)$ is called a cut of G with shores S and $V \setminus S$.

Definition

Let G = (V, E) be an undirected weighted graph.

Any $S \subseteq V$ induces a set $\delta(S)$ of edges with exactly one end node in S. The set $\delta(S)$ is called a cut of G with shores S and $V \setminus S$.

Finding a cut with maximum aggregate edge weight is known as max-cut problem.

Complexity

- NP-hard for:
 - general graphs with arbitrary edge weights,
 - almost planar graphs.
- Polynomial for e.g.:
 - graphs with exclusively negative edge weights,
 - planar graphs,
 - graphs not contractible to K_5 .

Complexity

- NP-hard for:
 - general graphs with arbitrary edge weights,
 - almost planar graphs.
- Polynomial for e.g.:
 - graphs with exclusively negative edge weights,
 - planar graphs,
 - graphs not contractible to K_5 .

Applications

- Unconstrained quadratic +/-1- resp. 0/1-optimization.
- Computation of ground states of Ising spin glasses.
- Via minimization in VLSI circuit design.

Cut polytope CUT(G)

Convex hull of all incidence vectors of cuts of G.

. Bonato et al. Lifting and Separation Procedures for the Cut Polytope

Cut polytope CUT(G)

Convex hull of all incidence vectors of cuts of G.

Semimetric polytope MET(G)

Relaxation of the max-cut IP formulation described by two inequality classes:

 $CUT(K_3)$

Odd-cycle:
$$x(F) - x(C \setminus F) \le |F| - 1$$
, for each cycle *C* of *G*,
for all $F \subseteq C$, $|F|$ odd.
Trivial: $0 \le x \le 1$ for all $e \in F$.

Cut polytope CUT(G)

Convex hull of all incidence vectors of cuts of G.

Semimetric polytope MET(G)

Relaxation of the max-cut IP formulation described by two inequality classes:

 $CUT(K_3)$

Odd-cycle:
$$x(F) - x(C \setminus F) \le |F| - 1$$
, for each cycle C of G,
for all $F \subseteq C, |F|$ odd.
Trivial: $0 \le x_e \le 1$, for all $e \in E$.

CUT(G) and MET(G) have exactly the same integral points.

Algorithms

- Branch & Cut,
- Branch&Bound using SDP relaxations.

Certain separation procedures only work for dense/complete graphs.

Algorithms

- Branch & Cut,
- Branch&Bound using SDP relaxations.

Certain separation procedures only work for dense/complete graphs.

How to handle sparse graphs?

Algorithms

- Branch & Cut,
- Branch&Bound using SDP relaxations.

Certain separation procedures only work for dense/complete graphs.

How to handle sparse graphs

• Trivial approach:

artificial completion using edges with weight 0.

• Drawback:

increases number of variables and thus the computational difficulty.

1 Max-Cut Problem

2 Contraction-based Separation

3 Computational Results

W.r.t. LP solution $z \in MET(G) \setminus CUT(G)$, the edge set decomposes into:

W.r.t. LP solution $z \in MET(G) \setminus CUT(G)$, the edge set decomposes into:

• 0-edges,

W.r.t. LP solution $z \in MET(G) \setminus CUT(G)$, the edge set decomposes into:

- 0-edges,
- 1-edges,

W.r.t. LP solution $z \in MET(G) \setminus CUT(G)$, the edge set decomposes into:

- 0-edges,
- 1-edges,
- fractional edges.

W.r.t. LP solution $z \in MET(G) \setminus CUT(G)$, the edge set decomposes into:

- 0-edges,
- 1-edges,
- fractional edges.

Artificial completion would require 96 additional edges!

Outline of the Contraction-based Separation

Input: LP solution $z \in MET(G) \setminus CUT(G)$.

Transform 1-edges into 0-edges.

 $z \in \mathsf{MET}(G)$ implies existence of a cut $\delta(S)$ that contains

Switching z alongside the cut $\delta(S)$:

• only affects edges of $\delta(S)$,

Switching z alongside the cut $\delta(S)$:

- only affects edges of $\delta(S)$,
- transforms all 1-edges into 0-edges,

Switching

 $z \in MET(G)$ implies existence of a cut $\delta(S)$ that contains all 1-edges but no 0-edges.

Switching z alongside the cut $\delta(S)$:

- only affects edges of $\delta(S)$,
- transforms all 1-edges into 0-edges,
- may alter values of fractional edges.

Switching z alongside the cut $\delta(S)$:

- only affects edges of $\delta(S)$,
- transforms all 1-edges into 0-edges,
- may alter values of fractional edges.

Values in the switched LP solution \tilde{z} are either fractional or zero.

Outline of the Contraction-based Separation

Contract 0-edges.

① Determine connected components of G_0 .

- **①** Determine connected components of G_0 .
- Ontract each component to a supernode.

- **①** Determine connected components of G_0 .
- Ontract each component to a supernode.

- Contracted LP solution \overline{z} has only fractional values.
- Associated contracted graph \overline{G} may not be complete.

Contraction as Heuristic Odd-Cycle Separator

Contraction as Heuristic Odd-Cycle Separator

Assume two components of G_0 are joined by two fractional edges f, g with different switched LP values. W.I.o.g. let $\tilde{z}_f > \tilde{z}_g$.

Assume two components of G_0 are joined by two fractional edges f, g with different switched LP values. W.I.o.g. let $\tilde{z}_f > \tilde{z}_g$.

Then the switched LP solution \tilde{z} violates the odd-cycle inequality

$$x_f - x(C \setminus f) \leq 0.$$

Assume two components of G_0 are joined by two fractional edges f, g with different switched LP values. W.I.o.g. let $\tilde{z}_f > \tilde{z}_g$.

Then the switched LP solution \tilde{z} violates the odd-cycle inequality

$$x_f - x(C \setminus f) \leq 0.$$

Contraction allows heuristic odd-cycle separation.

Outline of the Contraction-based Separation

Introduce artificial LP values for non-edges.

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph consist of a former non-edge

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph consist of a former non-edge and a connecting path.

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph consist of a former non-edge and a connecting path.

Feasible artificial LP values of non-edge ht Range: $[\max\{0, L_{ht}\}, \min\{U_{ht}, 1\}] \subseteq [0, 1]$ with

$$\begin{array}{l} L_{ht} := \max \left\{ \ \overline{z}(F) - \overline{z}(P \setminus F) - |F| + 1 \mid P \ (h, t) \text{-path}, \ F \subseteq P, \ |F| \ \text{odd} \right\}, \\ U_{ht} := \min \left\{ -\overline{z}(F) + \overline{z}(P \setminus F) + |F| \quad |P \ (h, t) \text{-path}, \ F \subseteq P, \ |F| \ \text{even} \right\}. \end{array}$$

Given a contracted LP solution $\overline{z} \in MET(\overline{G})$, assign artificial LP values to the non-edges. **Goal**: extended LP solution $\overline{z}' \in MET(\overline{G}')$.

New cycles in the extended graph consist of a former non-edge and a connecting path.

Feasible artificial LP values of non-edge ht Range: $[\max\{0, L_{ht}\}, \min\{U_{ht}, 1\}] \subseteq [0, 1]$ with

$$\begin{array}{l} L_{ht} := \max \left\{ \ \overline{z}(F) - \overline{z}(P \setminus F) - |F| + 1 \ | \ P \ (h, t) \text{-path}, \ F \subseteq P, \ |F| \ \text{odd} \right\}, \\ U_{ht} := \min \left\{ -\overline{z}(F) + \overline{z}(P \setminus F) + |F| \ | \ P \ (h, t) \text{-path}, \ F \subseteq P, \ |F| \ \text{even} \right\}. \end{array}$$

Odd-cycle / trivial inequality derived from arg max (resp. arg min) is called a lower (resp. upper) inequality of ht.

Separate extended LP solution.

Target Cuts vs. Standard Separation

Target cuts were introduced by Buchheim, Liers, and Oswald (2008).

Given:

- Polytope $P := \operatorname{conv}\{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$,
- Point $x^* \notin P$.

Target cuts were introduced by Buchheim, Liers, and Oswald (2008).

Given:

- Polytope $P := \operatorname{conv}\{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$,
- Point $x^* \notin P$.

Standard separation

Find a valid inequality $a^T x \le \alpha$ that separates x^* from *P*.

Target cuts were introduced by Buchheim, Liers, and Oswald (2008).

Given:

- Polytope $P := \operatorname{conv}\{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$,
- Point $x^* \notin P$.

Standard separation

Find a valid inequality $a^T x \leq \alpha$ that separates x^* from *P*.

> P • x*

Target cut separation Find a facet defining inequality $a^T x \leq \alpha$ that separates x^* from *P*.

Given:

- Polytope $P := \operatorname{conv}\{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$,
- Point $x^* \notin P$,

Given:

- Polytope $P := \operatorname{conv}\{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$,
- Point $x^* \notin P$,
- Point $q \in \operatorname{relint}(P)$.

Given:

- Polytope $P := \operatorname{conv}\{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$,
- Point $x^* \notin P$,
- Point $q \in \operatorname{relint}(P)$.

Goal

Find the inequality $a^T x \leq \alpha$ which defines the facet of *P* that is intersected by the line $\overline{qx^*}$.

Given:

- Polytope $P := \operatorname{conv}\{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$,
- Point $x^* \notin P$,
- Point $q \in \operatorname{relint}(P)$.

Goal

Find the inequality $a^T x \leq \alpha$ which defines the facet of *P* that is intersected by the line $\overline{qx^*}$.

Target Cut LP

$$\begin{array}{l} \max \ a^T(x^*-q)\\ \text{s.t.} \ a^T(x_i-q)\leq 1, \ \text{for} \ i=1,\ldots,n\\ a\in \mathbb{R}^d. \end{array}$$

Outline of the Contraction-based Separation

Project out nonzero coefficients related to non-edges.

Consider a valid inequality $\overline{a}'^T \overline{x}' \leq \overline{\alpha}'$ violated by the extended LP solution \overline{z}' . Non-edges may have nonzero coefficients!

$$(\cdots \ \overline{\mathbf{a}}'_{\mathsf{uv}} \cdots \ \overline{\mathbf{a}}'_{\mathsf{st}} \cdots, \ \overline{\alpha}')$$

Consider a valid inequality $\overline{a}^{T} \overline{x}^{\prime} \leq \overline{a}^{\prime}$ violated by the extended LP solution \overline{z}^{\prime} . Non-edges may have nonzero coefficients!

Project out coefficient of non-edge uv Add a lower inequality if $\overline{a}'_{uv} > 0$ resp. an upper inequality if $\overline{a}'_{uv} < 0$.

$$(\cdots \quad \overline{\mathbf{a}}'_{uv} \quad \cdots \quad \overline{\mathbf{a}}'_{st} \quad \cdots , \quad \overline{\alpha}') \\ + (\cdots - \overline{\mathbf{a}}'_{uv} \quad \cdots \quad \cdots \quad \cdots , \quad \overline{\beta}'_1) \\ + (\cdots \quad \cdots \quad \cdots \quad - \overline{\mathbf{a}}'_{st} \quad \cdots , \quad \overline{\beta}'_2)$$

Consider a valid inequality $\overline{a}^{T} \overline{x}^{\prime} \leq \overline{a}^{\prime}$ violated by the extended LP solution \overline{z}^{\prime} . Non-edges may have nonzero coefficients!

Project out coefficient of non-edge uv Add a lower inequality if $\overline{a}'_{uv} > 0$ resp. an upper inequality if $\overline{a}'_{uv} < 0$.

$$(\cdots \quad \overline{\mathbf{a}}_{uv}' \cdots \quad \overline{\mathbf{a}}_{st}' \cdots , \overline{\alpha}') \\ + (\cdots - \overline{\mathbf{a}}_{uv}' \cdots \cdots \cdots , \overline{\beta}_{1}') \\ + (\cdots \quad \cdots \quad - \overline{\mathbf{a}}_{st}' \cdots , \overline{\beta}_{2}') \\ \hline = (\cdots \quad 0 \quad \cdots \quad 0 \quad \cdots , \overline{\gamma})$$

In the projected inequality, all non-edge coefficients are 0 and can be truncated.

Consider a valid inequality $\overline{a}'^T \overline{x}' \leq \overline{\alpha}'$ violated by the extended LP solution \overline{z}' . Non-edges may have nonzero coefficients!

Project out coefficient of non-edge uv Add a lower inequality if $\overline{a}'_{uv} > 0$ resp. an upper inequality if $\overline{a}'_{uv} < 0$.

$$(\cdots \quad \overline{\mathbf{a}}_{uv}' \cdots \quad \overline{\mathbf{a}}_{st}' \cdots , \overline{\alpha}') \\ + (\cdots - \overline{\mathbf{a}}_{uv}' \cdots \cdots \cdots , \overline{\beta}_{1}') \\ + (\cdots \quad \cdots \quad - \overline{\mathbf{a}}_{st}' \cdots , \overline{\beta}_{2}') \\ \hline = (\cdots \quad 0 \quad \cdots \quad 0 \quad \cdots , \overline{\gamma})$$

In the projected inequality, all non-edge coefficients are 0 and can be truncated.

Drawback

- If the added inequalities are not tight at \overline{z}' then the projection reduces the initial violation.
- Question of facet preservation partially answered by Avis et al. (2008), but conditions seldom satisfied by presented approach.

Outline of the Contraction-based Separation

Lift inequality.

When contracting edge e = ht, store partition (H, T, B) of the adjacent nodes:

- *H* = { exclusive neighbors of *h* },
- $T = \{ \text{ exclusive neighbors of } t \},$
- $B = \{ \text{ common neighbors of } h \text{ and } t \}.$

When contracting edge e = ht, store partition (H, T, B) of the adjacent nodes:

- *H* = { exclusive neighbors of *h* },
- $T = \{ \text{ exclusive neighbors of } t \},$
- $B = \{ \text{ common neighbors of } h \text{ and } t \}.$

Lift inequality

• Assign coefficients of edges of the shrunk graph

When contracting edge e = ht, store partition (H, T, B) of the adjacent nodes:

- *H* = { exclusive neighbors of *h* },
- $T = \{ \text{ exclusive neighbors of } t \},$
- $B = \{ \text{ common neighbors of } h \text{ and } t \}.$

Lift inequality

• Assign coefficients of edges of the shrunk graph to edges of the original graph w.r.t. (*H*, *T*, *B*).

When contracting edge e = ht, store partition (H, T, B) of the adjacent nodes:

- *H* = { exclusive neighbors of *h* },
- $T = \{ \text{ exclusive neighbors of } t \},$
- $B = \{ \text{ common neighbors of } h \text{ and } t \}.$

Lift inequality

- Assign coefficients of edges of the shrunk graph to edges of the original graph w.r.t. (*H*, *T*, *B*).
- Edge *e* gets coefficient min { ∑_{v∈T} | c̄_{wv}|, ∑_{v∈H} | c̄_{wv}| }.
 W.I.o.g. we assume that the edges (*w* : *T*) yield the arg min.

Theorem

An inequality (\hat{c}, γ) obtained from a facet (\overline{c}, γ) of $CUT(\overline{G})$ by splitting node w w.r.t. (H, T, B) defines a facet of $CUT(\hat{G})$ if there exists a node set $S \subseteq \overline{V}$ with $w \in S$ that satisfies:

(i) (\overline{c}, γ) is tight at $\chi^{\delta(S)}$.

(ii) \overline{c} is nonnegative on $(w : T \cap S)$ and nonpositive on $(w : T \setminus S)$.

(iii) $\overline{c}(v:S) = \overline{c}(v:\overline{V} \setminus S)$, for all $v \in B$.

Theorem

An inequality (\hat{c}, γ) obtained from a facet (\overline{c}, γ) of $CUT(\overline{G})$ by splitting node w w.r.t. (H, T, B) defines a facet of $CUT(\hat{G})$ if there exists a node set $S \subseteq \overline{V}$ with $w \in S$ that satisfies:

(i) (\overline{c}, γ) is tight at $\chi^{\delta(S)}$.

(ii) \overline{c} is nonnegative on $(w : T \cap S)$ and nonpositive on $(w : T \setminus S)$. (iii) $\overline{c}(v : S) = \overline{c}(v : \overline{V} \setminus S)$, for all $v \in B$.

Proof sketch

Show: face $(\hat{c}, \gamma) \subseteq$ facet $(\hat{b}, \beta) \Rightarrow$ IEQs identical up to pos. scaling.

Theorem

An inequality (\hat{c}, γ) obtained from a facet (\overline{c}, γ) of $CUT(\overline{G})$ by splitting node w w.r.t. (H, T, B) defines a facet of $CUT(\hat{G})$ if there exists a node set $S \subseteq \overline{V}$ with $w \in S$ that satisfies:

(i) (\overline{c}, γ) is tight at $\chi^{\delta(S)}$.

(ii) \overline{c} is nonnegative on $(w : T \cap S)$ and nonpositive on $(w : T \setminus S)$. (iii) $\overline{c}(v : S) = \overline{c}(v : \overline{V} \setminus S)$, for all $v \in B$.

Proof sketch

Show: face $(\hat{c}, \gamma) \subseteq$ facet $(\hat{b}, \beta) \Rightarrow$ IEQs identical up to pos. scaling. • $\exists \lambda > 0$ with $\hat{b}_e = \lambda \hat{c}_e$, for $e \notin (\{h, t\} : B) \cup ht$ and $\hat{b}_{hv} + \hat{b}_{tv} = \lambda \hat{c}_{hv}$, for $v \in B$. (due to tight cut correspondence)

Theorem

An inequality (\hat{c}, γ) obtained from a facet (\overline{c}, γ) of $CUT(\overline{G})$ by splitting node w w.r.t. (H, T, B) defines a facet of $CUT(\hat{G})$ if there exists a node set $S \subseteq \overline{V}$ with $w \in S$ that satisfies:

(i) (\overline{c}, γ) is tight at $\chi^{\delta(S)}$.

(ii) \overline{c} is nonnegative on $(w : T \cap S)$ and nonpositive on $(w : T \setminus S)$. (iii) $\overline{c}(v : S) = \overline{c}(v : \overline{V} \setminus S)$, for all $v \in B$.

Proof sketch

Show: face $(\hat{c}, \gamma) \subseteq$ facet $(\hat{b}, \beta) \Rightarrow$ IEQs identical up to pos. scaling. • $\exists \lambda > 0$ with $\hat{b}_e = \lambda \hat{c}_e$, for $e \notin (\{h, t\} : B) \cup ht$ and $\hat{b}_{hv} + \hat{b}_{tv} = \lambda \hat{c}_{hv}$, for $v \in B$. (due to tight cut correspondence) • $S' := S \setminus w \cup h$ and $S'' := S' \cup t$ induce tight cuts of (\hat{c}, γ) .

Theorem

An inequality (\hat{c}, γ) obtained from a facet (\overline{c}, γ) of $CUT(\overline{G})$ by splitting node w w.r.t. (H, T, B) defines a facet of $CUT(\hat{G})$ if there exists a node set $S \subseteq \overline{V}$ with $w \in S$ that satisfies:

(i) (\overline{c}, γ) is tight at $\chi^{\delta(S)}$.

(ii) \overline{c} is nonnegative on $(w : T \cap S)$ and nonpositive on $(w : T \setminus S)$. (iii) $\overline{c}(v : S) = \overline{c}(v : \overline{V} \setminus S)$, for all $v \in B$.

Proof sketch

Show: face $(\hat{c}, \gamma) \subseteq$ facet $(\hat{b}, \beta) \Rightarrow$ IEQs identical up to pos. scaling. • $\exists \lambda > 0$ with $\hat{b}_e = \lambda \hat{c}_e$, for $e \notin (\{h, t\} : B) \cup ht$ and $\hat{b}_{hv} + \hat{b}_{tv} = \lambda \hat{c}_{hv}$, for $v \in B$. (due to tight cut correspondence) • $S' := S \setminus w \cup h$ and $S'' := S' \cup t$ induce tight cuts of (\hat{c}, γ) .

• Consider $\delta(S')$, let $v \in B$ swap shores $\rightsquigarrow \hat{b}_{tv} = \lambda \hat{c}_{tv} = 0$.

Theorem

An inequality (\hat{c}, γ) obtained from a facet (\overline{c}, γ) of $CUT(\overline{G})$ by splitting node w w.r.t. (H, T, B) defines a facet of $CUT(\hat{G})$ if there exists a node set $S \subseteq \overline{V}$ with $w \in S$ that satisfies:

(i) (\overline{c}, γ) is tight at $\chi^{\delta(S)}$.

(ii) \overline{c} is nonnegative on $(w : T \cap S)$ and nonpositive on $(w : T \setminus S)$. (iii) $\overline{c}(v : S) = \overline{c}(v : \overline{V} \setminus S)$, for all $v \in B$.

Proof sketch

Show: face $(\hat{c}, \gamma) \subseteq$ facet $(\hat{b}, \beta) \Rightarrow$ IEQs identical up to pos. scaling. • $\exists \lambda > 0$ with $\hat{b}_e = \lambda \hat{c}_e$, for $e \notin (\{h, t\} : B) \cup ht$ and $\hat{b}_{hv} + \hat{b}_{tv} = \lambda \hat{c}_{hv}$, for $v \in B$. (due to tight cut correspondence) • $S' := S \setminus w \cup h$ and $S'' := S' \cup t$ induce tight cuts of (\hat{c}, γ) . • Consider $\delta(S')$, let $v \in B$ swap shores $\rightsquigarrow \hat{b}_{tv} = \lambda \hat{c}_{tv} = 0$. • Compare $\delta(S')$ and $\delta(S'') \rightsquigarrow \hat{b}_{ht} = \lambda \hat{c}_{ht}$. Switch back lifted inequality.

Theorem (Barahona and Mahjoub (1986))

An inequality

$$\sum_{e \notin \delta(S)} c_e x_e + \sum_{e \in \delta(S)} c_e (1 - x_e) \le \gamma$$

obtained from a facet (c, γ) of CUT(G) by switching alongside a cut $\delta(S)$ defines a facet of CUT(G).

Theorem (Barahona and Mahjoub (1986))

An inequality

$$\sum_{e \notin \delta(S)} c_e x_e + \sum_{e \in \delta(S)} c_e (1 - x_e) \le \gamma$$

obtained from a facet (c, γ) of CUT(G) by switching alongside a cut $\delta(S)$ defines a facet of CUT(G).

Proof sketch

For cuts induced by a single node v:

- $\{\chi^{\delta(U_i)}\}_{i=1,...,|E|}$ are affinely independent and satisfy the original inequality with equality. W.I.o.g. $v \in U_i$, for all *i*.
- Thus, $\{\chi^{\delta(U_i \setminus v)}\}_{i=1,\dots,|E|}$ are affinely independent and satisfy the switched inequality with equality.

Theorem (Barahona and Mahjoub (1986))

An inequality

$$\sum_{e \notin \delta(S)} c_e x_e + \sum_{e \in \delta(S)} c_e (1 - x_e) \le \gamma$$

obtained from a facet (c, γ) of CUT(G) by switching alongside a cut $\delta(S)$ defines a facet of CUT(G).

Proof sketch

For cuts induced by a single node v:

- $\{\chi^{\delta(U_i)}\}_{i=1,...,|E|}$ are affinely independent and satisfy the original inequality with equality. W.I.o.g. $v \in U_i$, for all *i*.
- Thus, $\{\chi^{\delta(U_i \setminus v)}\}_{i=1,\dots,|E|}$ are affinely independent and satisfy the switched inequality with equality.

For arbitrary cuts, iterate over all nodes in one of the cut's shores.

1 Max-Cut Problem

2 Contraction-based Separation

3 Computational Results

Computational Experiments

Used max-cut solver based on B&C framework ABACUS.

Problem classes

- Quadratic 0/1-optimization resp. max-cut problems taken from Biq Mac Library.
- Spin glass problems on toroidal grid graphs with uniformly distributed ± 1 resp. Gaussian distributed integral weights.

Problem classes

- Quadratic 0/1-optimization resp. max-cut problems taken from Biq Mac Library.
- Spin glass problems on toroidal grid graphs with uniformly distributed ± 1 resp. Gaussian distributed integral weights.

Separation schemes

• Standard (CYC):

Odd-cycles (spanning-tree heuristic, 3-/4-cycles, exact separation).

Problem classes

- Quadratic 0/1-optimization resp. max-cut problems taken from Biq Mac Library.
- Spin glass problems on toroidal grid graphs with uniformly distributed ± 1 resp. Gaussian distributed integral weights.

Separation schemes

• Standard (CYC):

Odd-cycles (spanning-tree heuristic, 3-/4-cycles, exact separation).

• Contraction (CON):

"Standard" + contraction-based OC-separation prior to exact OC-separation.

Problem classes

- Quadratic 0/1-optimization resp. max-cut problems taken from Biq Mac Library.
- Spin glass problems on toroidal grid graphs with uniformly distributed ± 1 resp. Gaussian distributed integral weights.

Separation schemes

• Standard (CYC):

Odd-cycles (spanning-tree heuristic, 3-/4-cycles, exact separation).

• Contraction (CON):

"Standard" + contraction-based OC-separation prior to exact OC-separation.

• Extension (CLQ, TC):

"Contraction" + additional separation on extended LP solution.

Comparison of CPU Times

			#Wins				#Add. rejects			Avg. CPU time red. [%]		
Class	#Files	#Limit	CYC	CON	CLQ	тс	CON	CLQ	тс	CON	CLQ	тс
bqp50	10	0	0	6	8	8	0	0	0	92	97	97
bqp100	10	0	0	6	6	4	0	0	0	97	97	96
bqp250	10	5	0	5	0	0	2(0)	3(3)	2(0)	59	9	41
be120.3	10	0	0	9	1	0	1(0)	1(1)	1(1)	57	-85	16
be250	10	6	0	4	0	0	0	1(1)	0	54	-23	47
gka.a	8	0	0	4	5	3	0	0	0	93	94	91
gka.b	10	0	0	10	0	0	0	0	4(4)	58	19	-40215
gka.c	7	0	0	2	3	5	0	0	0	95	95	96
gka.d	10	4	0	6	1	1	1(0)	1(1)	1(1)	67	$^{-1}$	41
tpm.2d	120	8	0	112	b	b	18(0)	b	b	96	b	b
tg.2d	320	0	0	320	b	b	1(0)	b	b	90	b	b
tpm.3d	40	5	5	25	4	7	1(0)	5(5)	1(1)	23	-159	-56
tg.3d	70	7	2	39	17	20	4(2)	5(5)	3(0)	44	-40	26
g05_60 ^c	10	0	0	— ^a	10	0	a	0	3(3)	a	\geq 87	\geq 62
pm1s	20	0	14	6	0	0	0	0	0	-16	-309	-62
w01	10	0	8	1	0	1	0	0	0	-37	-458	-73
pw01	10	0	8	2	0	0	0	0	0	-24	-685	-102
man	4	0	0	3	1	0	2(0)	2(0)	2(0)	71	70	61
pman	57	0	7	23	27	22	9(7)	9(0)	10(3)	67	68	64

^a CON ran out of memory for every instance.

^b Equivalent to CON.

^c CYC exceeded the 10 hour time limit on all instances. We used the limit as lower bound on the CPU time of CYC.

[Intel Xeon 2.8 GHz, 8GB shared RAM. Running time capped to 10h per instance.]

Spin Glass Problems with Gaussian Distributed Integral Weights

Average running time of 10 random instances per grid size

[Intel Xeon 2.8 GHz, 8GB shared RAM. Running time capped to 10h per instance.]

Data origin

- Performed optimization runs on ten toroidal (100 \times 100)-grids with Gaussian distributed edge weights.
- Recorded the final sizes of those graphs that could be contracted without encountering violated odd-cycles.

Figures show the superimposed data of the optimization runs.

Contraction-based Separation

• Enables the use of separation techniques for dense/complete graphs on sparse graphs.

Contraction-based Separation

- Enables the use of separation techniques for dense/complete graphs on sparse graphs.
- Use of target cut separation can produce facet defining inequalities not available through techniques that follow the classical template paradigm.

Contraction-based Separation

- Enables the use of separation techniques for dense/complete graphs on sparse graphs.
- Use of target cut separation can produce facet defining inequalities not available through techniques that follow the classical template paradigm.
- In our experiments, using the contraction as heuristic odd-cycle separator lead to an average CPU time reduction of almost 55% with peak values of up to 97% for selected problem classes.

References

- Avis, Imai, Ito. Generating facets for the cut polytope of a graph by triangular elimination. 2008.
- Barahona, Mahjoub. *On the cut polytope*. Mathematical Programming 36:157–173. 1986.
- Bonato, Jünger, Reinelt, Rinaldi. Lifting and separation procedures for the cut polytope. Mathematical Programming A. 2013.
- Buchheim, Liers, Oswald. *Local cuts revisited*. Operations Research Letters 36:430–433. 2008.
- Jünger, Thienel. *ABACUS A Branch-And-CUt System*. http://www.informatik.uni-koeln.de/abacus/.
- Wiegele. Biq Mac Library A collection of Max-Cut and quadratic 0-1 programming instances of medium size. http://biqmac.uni-klu.ac.at/biqmaclib.html.